Skip to content

Allow use of add_*_selector methods in ScatterGraphic #883

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions docs/source/api/graphics/ScatterGraphic.rst
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,9 @@ Methods

ScatterGraphic.add_axes
ScatterGraphic.add_event_handler
ScatterGraphic.add_linear_region_selector
ScatterGraphic.add_linear_selector
ScatterGraphic.add_rectangle_selector
ScatterGraphic.clear_event_handlers
ScatterGraphic.remove_event_handler
ScatterGraphic.rotate
Expand Down
66 changes: 66 additions & 0 deletions examples/selection_tools/linear_region_scatter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
"""
LinearRegionSelectors with ScatterGraphic
=========================================

Example showing how to use a `LinearRegionSelector` with a scatter plot. We demonstrate two use cases, a horizontal
LinearRegionSelector which selects along the x-axis and a vertical selector which moves along the y-axis.
"""

# test_example = false
# sphinx_gallery_pygfx_docs = 'screenshot'

import fastplotlib as fpl
import numpy as np

# names for out subplots
names = [
["scatter x", "scatter y"],
["zoomed x region", "zoomed y region"]
]

# 2 rows, 2 columns
figure = fpl.Figure(
(2, 2),
size=(700, 560),
names=names,
)

scatter_x_data = (100*np.random.random_sample(size=(500, 2))).astype(np.float32)
scatter_y_data = (100*np.random.random_sample(size=(500, 2))).astype(np.float32)

# plot scatter data
scatter_x = figure[0, 0].add_scatter(scatter_x_data)
scatter_y = figure[0, 1].add_scatter(scatter_y_data)

# add linear selectors
selector_x = scatter_x.add_linear_region_selector((0, 100)) # default axis is "x"
selector_y = scatter_y.add_linear_region_selector(axis="y")

@selector_x.add_event_handler("selection")
def set_zoom_x(ev):
"""sets zoomed x selector data"""
selected_data = ev.get_selected_data()
figure[1, 0].clear()
figure[1, 0].add_scatter(selected_data, sizes=10)
figure[1, 0].auto_scale()


@selector_y.add_event_handler("selection")
def set_zoom_y(ev):
"""sets zoomed y selector data"""
selected_data = ev.get_selected_data()
figure[1, 1].clear()
figure[1, 1].add_scatter(selected_data, sizes=10)
figure[1, 1].auto_scale()

# set initial selection
selector_x.selection = (30, 60)
selector_y.selection = (30, 60)

figure.show(maintain_aspect=False)

# NOTE: fpl.loop.run() should not be used for interactive sessions
# See the "JupyterLab and IPython" section in the user guide
if __name__ == "__main__":
print(__doc__)
fpl.loop.run()
49 changes: 49 additions & 0 deletions examples/selection_tools/rectangle_selector_scatter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
"""
Rectangle Selectors with ScatterGraphic
=======================================

Example showing how to use a `RectangleSelector` with a scatter plot.
"""

# test_example = false
# sphinx_gallery_pygfx_docs = 'screenshot'

import numpy as np
import fastplotlib as fpl

# create a figure
figure = fpl.Figure(
size=(700, 560)
)

xys = (100 * np.random.random_sample(size=(200, 2))).astype(np.float32)

# add image
scatter = figure[0, 0].add_scatter(xys, cmap="jet", sizes=4)

# add rectangle selector to image graphic
rectangle_selector = scatter.add_rectangle_selector()

# add event handler to highlight selected indices
@rectangle_selector.add_event_handler("selection")
def color_indices(ev):
scatter.cmap = "jet"
scatter.sizes = 4
ixs = ev.get_selected_indices()
if ixs.size == 0:
return
scatter.colors[ixs] = 'w'
scatter.sizes[ixs] = 8


# manually move selector to make a nice gallery image :D
rectangle_selector.selection = (20, 40, 40, 60)


figure.show()

# NOTE: fpl.loop.run() should not be used for interactive sessions
# See the "JupyterLab and IPython" section in the user guide
if __name__ == "__main__":
print(__doc__)
fpl.loop.run()
195 changes: 195 additions & 0 deletions fastplotlib/graphics/_positions_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@

import pygfx
from ._base import Graphic
from .selectors import LinearRegionSelector, LinearSelector, RectangleSelector
from ..utils import quick_min_max
from .features import (
VertexPositions,
VertexColors,
Expand Down Expand Up @@ -153,3 +155,196 @@ def __init__(

self._size_space = SizeSpace(size_space)
super().__init__(*args, **kwargs)

def add_linear_selector(
self, selection: float = None, axis: str = "x", **kwargs
) -> LinearSelector:
"""
Adds a :class:`.LinearSelector`.

Selectors are just ``Graphic`` objects, so you can manage, remove, or delete them from a
plot area just like any other ``Graphic``.

Parameters
----------
selection: float, optional
selected point on the linear selector, by default the first datapoint on the line.

axis: str, default "x"
axis that the selector resides on

kwargs
passed to :class:`.LinearSelector`

Returns
-------
LinearSelector

"""

bounds_init, limits, size, center = self._get_linear_selector_init_args(
axis, padding=0
)

if selection is None:
selection = bounds_init[0]

selector = LinearSelector(
selection=selection,
limits=limits,
axis=axis,
parent=self,
**kwargs,
)

self._plot_area.add_graphic(selector, center=False)

# place selector above this graphic
selector.offset = selector.offset + (0.0, 0.0, self.offset[-1] + 1)

return selector

def add_linear_region_selector(
self,
selection: tuple[float, float] = None,
padding: float = 0.0,
axis: str = "x",
**kwargs,
) -> LinearRegionSelector:
"""
Add a :class:`.LinearRegionSelector`.

Selectors are just ``Graphic`` objects, so you can manage, remove, or delete them from a
plot area just like any other ``Graphic``.

Parameters
----------
selection: (float, float), optional
the starting bounds of the linear region selector, computed from data if not provided

axis: str, default "x"
axis that the selector resides on

padding: float, default 0.0
Extra padding to extend the linear region selector along the orthogonal axis to make it easier to interact with.

kwargs
passed to ``LinearRegionSelector``

Returns
-------
LinearRegionSelector
linear selection graphic

"""

bounds_init, limits, size, center = self._get_linear_selector_init_args(
axis, padding
)

if selection is None:
selection = bounds_init

# create selector
selector = LinearRegionSelector(
selection=selection,
limits=limits,
size=size,
center=center,
axis=axis,
parent=self,
**kwargs,
)

self._plot_area.add_graphic(selector, center=False)

# place selector below this graphic
selector.offset = selector.offset + (0.0, 0.0, self.offset[-1] - 1)

# PlotArea manages this for garbage collection etc. just like all other Graphics
# so we should only work with a proxy on the user-end
return selector

def add_rectangle_selector(
self,
selection: tuple[float, float, float, float] = None,
**kwargs,
) -> RectangleSelector:
"""
Add a :class:`.RectangleSelector`.

Selectors are just ``Graphic`` objects, so you can manage, remove, or delete them from a
plot area just like any other ``Graphic``.

Parameters
----------
selection: (float, float, float, float), optional
initial (xmin, xmax, ymin, ymax) of the selection
"""
# computes args to create selectors

# remove any nans
data = self.data.value[~np.any(np.isnan(self.data.value), axis=1)]

x_axis_vals = data[:, 0]
y_axis_vals = data[:, 1]

ymin = np.floor(y_axis_vals.min()).astype(int)
ymax = np.ceil(y_axis_vals.max()).astype(int)
y25p = 0.25 * (ymax - ymin)
xmin = np.floor(x_axis_vals.min()).astype(int)
xmax = np.ceil(x_axis_vals.max()).astype(int)
x25p = 0.25 * (xmax - xmin)

# default selection is 25% of the image
if selection is None:
selection = (xmin, xmin + x25p, ymin, ymax)

# min/max limits include the data + 25% padding in the y-direction
limits = (xmin, xmax, ymin - y25p, ymax + y25p)

selector = RectangleSelector(
selection=selection,
limits=limits,
parent=self,
**kwargs,
)

self._plot_area.add_graphic(selector, center=False)

return selector

# TODO: this method is a bit of a mess, can refactor later
def _get_linear_selector_init_args(
self, axis: str, padding
) -> tuple[tuple[float, float], tuple[float, float], float, float]:
# computes args to create selectors

# remove any nans
data = self.data.value[~np.any(np.isnan(self.data.value), axis=1)]

if axis == "x":
# xvals
axis_vals = data[:, 0]

# yvals to get size and center
magn_vals = data[:, 1]
elif axis == "y":
axis_vals = data[:, 1]
magn_vals = data[:, 0]

axis_vals_min = np.floor(axis_vals.min()).astype(int)
axis_vals_max = np.ceil(axis_vals.max()).astype(int)
axis_vals_25p = axis_vals_min + 0.25 * (axis_vals_max - axis_vals_min)

# default selection is 25% of the image
bounds_init = axis_vals_min, axis_vals_25p
limits = axis_vals_min, axis_vals_max

# width or height of selector
size = int(np.ptp(magn_vals) * 1.5 + padding)

# center of selector along the other axis
center = sum(quick_min_max(magn_vals)) / 2

return bounds_init, limits, size, center
Loading
Loading