Claim Missing Document
Check
Articles

Found 2 Documents
Search

Studi Kalibrasi Parameter NRECA Berbasis Algoritma Genetika untuk Pemodelan Curah Hujan-Debit di DAS Rejoso Putri, Angelina Satya; Suhartanto, Ery; Andawayanti, Ussy
Jurnal Penelitian Pendidikan IPA Vol 11 No 6 (2025): June
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v11i6.11091

Abstract

The Rejoso watershed in Pasuruan Regency is a critical water resource that supports various sectors, including agriculture and domestic needs. However, the imbalance between water demand and availability, exacerbated by insufficient discharge measurement infrastructure, necessitates alternative approaches to determine river discharge. This study utilizes the NRECA method combined with Genetic Algorithms (GA) to estimate river discharge by calibrating key hydrological parameters, Percent Sub-Surface (PSUB) and Ground Water Flow (GWF). Data from seven rainfall stations and AWLR Winongan were analyzed for the 2004-2023 period. Calibration of the NRECA model was carried out using the Nash-Sutcliffe Efficiency (NSE) and correlation coefficient (R), both achieving values close to 1, indicating an excellent model fit. The study highlights the applicability of GA for optimizing hydrological parameters and demonstrates the potential of the NRECA-GA method in improving discharge predictions in watersheds with limited data. These findings contribute to more effective and sustainable water resource management in the Rejoso watershed.
Model Prototipe Alih Ragam Hujan Ke Debit Menggunakan Data Satelit TRMM Dan Jaringan Syaraf Tiruan Suhartanto, Ery; Andawayanti, Ussy; Lufira, Rahmah Dara; Darmawan, Azhar Adi; Putri, Angelina Satya
Teras Jurnal : Jurnal Teknik Sipil Vol. 15 No. 1 (2025): Volume 15 Nomor 1, Maret 2025
Publisher : UNIVERSITAS MALIKUSSALEH

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/tj.v15i1.1219

Abstract

Abstrak Ketersediaan dan akurasi data hujan maupun debit menjadi masalah umum di setiap DAS termasuk Sub DAS Lesti. Penelitian ini fokus pada kalibrasi dan validasi data satelit TRMM terhadap pos hujan lapangan. selain itu, bertujuan untuk mengembangkan model prototipe alih ragam hujan ke debit menggunakan JST. Pemodelan ini memanfaatkan data masukan hidrologi, termasuk data satelit TRMM, hari hujan, evaporasi, dan penggunaan lahan, serta data target debit dari Sub DAS Lesti. Hasil kalibrasi dan validasi data satelit TRMM menghasilkan nilai NSE sebesar 0,97 (sangat baik) dan koefisien korelasi (R) sebesar 1,00 (sangat kuat). Selain itu, hasil pemodelan diperoleh kalibrasi terbaik model prototipe yang mengkonversi data hujan menjadi debit menggunakan JST dengan fungsi transfer logsig, menghasilkan nilai koefisien korelasi R = 0,98897 (sangat kuat) dengan skema arsitektur jaringan 8-2-10-1 (terdiri dari delapan lapisan masukan, dua lapisan tersembunyi, sepuluh neuron, satu lapisan keluaran) pada 3000 epochs. Kata kunci: Hujan, Debit, TRMM, Jaringan Syaraf Tiruan  Abstract The availability and accuracy of rain and discharge data is a common problem in every watershed, including the Lesti sub-watershed. This research focuses on the calibration and validation of TRMM satellite data on field rain posts. Apart from that, it aims to develop a prototype model for transferring rainfall variations to discharge using ANN. This modeling utilizes hydrological input data, including TRMM satellite data, rainy days, evaporation, and land use, as well as discharge target data from the Lesti Sub-watershed. The results of calibration and validation of TRMM satellite data produced an NSE value of 0.97 (very good) and a correlation coefficient (R) of 1.00 (very strong). In addition, the modeling results obtained the best calibration of the prototype model which converts rain data into discharge using ANN with the logsig transfer function, producing a correlation coefficient value of R = 0.98897 (very strong) with an 8-2-10-1 network architecture scheme (consisting of eight input layers, two hidden layers, ten neurons, one output layer) at 3000 epochs. Keywords:  Rainfall, Discharge, TRMM, Artificial Neural Network