Claim Missing Document
Check
Articles

Found 6 Documents
Search

PERANCANGAN DAN ANALISIS ROTOR MOTOR MAGNET PERMANEN UNTUK APLIKASI MOBIL LISTRIK / HIBRID ; DESIGN AND ANALYSIS OF PERMANENT MAGNET MOTOR ROTOR APPLICATION FOR ELECTRIC CARS/HYBRID Hikmawan, Muhammad Fathul; Widiyanto, Puji
Ketenagalistrikan dan Energi Terbarukan Vol 15, No 1 (2016): KETENAGALISTRIKAN DAN ENERGI TERBARUKAN
Publisher : P3TKEBTKE

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perancangan rotor merupakan bagian terpenting dalam proses perancangan komponen mekanik se-buah motor listrik, karena sangat menentukan performa dan umur mesin. Dalam makalah ini dirancang sebuah rotor untuk motor listrik magnet permanen dengan spesifikasi 18 kW, 6 kutub, dan kecepatan nominal 6000 rpm. Merujuk pada spesifikasi tersebut, maka diameter terkecil poros rotor dapat diperoleh, yaitu 38 mm. Dalam proses pemilihan bearing diameter terkecil poros digunakan sebagai acuan. Jenis bearing yang dipilih adalah 6308 LLB, mampu digunakan selama 5 tahun dengan asumsi motor bekerja selama 15 jam/ hari. Pada tahap akhir dilakukan validasi menggunakan software ANSYS untuk mengetahui apakah kekuatan struktur rotor sudah memenuhi spesifikasi. Hasil simu-lasi menunjukkan bahwa tegangan maksimum yang terjadi pada rotor 2,7643x107 N/m2 lebih kecil dibanding tegangan ijin maksimum bahan 1,6x108 N/m2. Hal ini menunjukkan bahwa po-ros yang dirancang dapat beroperasi dengan aman pada spesifikasi yang ditentukan.The Rotor design is an important part in mechanical components design process of the electric motor, because it largely determines the performance and lifetime of the engine. In this paper rotor of the permanent magnet electric motor, with the specification 18 kW , 6 poles , and 6000 rpm nominal speed was designed. According to the specification, so the smallest rotor shaft diameter can be ob-tained, that is 38 mm. In bearing selection process, the smallest rotor shaft diameter used as a refer-ence . Bearing type chosen is 6308 LLB, can be used for 5 years, assuming the motor to work for 15 hours / day. At the final stage of validation was done using ANSYS software to determine whether the strength of the rotor structure meets the specifications. Simulation results show that the maximum stress occurs at rotor 2,7643x107 N / m 2 is smaller than the material maximum allowable stress 1,6x108 N / m 2. This indicates that the shaft is designed to operate safely on the prescribed specifications.
Load characteristic analysis of a double-side internal coreless stator axial flux PMG Wirtayasa, Ketut; Irasari, Pudji; Kasim, Muhammad; Widiyanto, Puji; Hikmawan, Muhammad Fathul
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 10, No 1 (2019)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2867.192 KB) | DOI: 10.14203/j.mev.2019.v10.17-23

Abstract

The main issue of using a permanent magnet in electric machines is the presence of cogging torque. Several methods have been introduced to eliminate it, one of which is by employing a coreless stator. In this paper, the load characteristic analysis of the double-side internal coreless stator axial flux permanent magnet generator with the specification of 1 kW, 220 V, 50 Hz, 300 rpm and 1 phase is discussed. The purpose is to learn the effect of the load to the generator performance, particularly the output power, efficiency and voltage regulation. The design and analysis are conducted analytically and numerically with two types of simulated loads, pure resistive and resistive-inductive in series. Each type of load provides power factor 1 and 0.85 respectively. The simulation results show that when loaded with resistive load, the generator gives a better performance at the output power (1,241 W) and efficiency (91 %), whereas a better voltage regulator (5.86 %) is achieved when it is loaded with impedance. Since the difference in the value of each parameter being compared is relatively small, it can be concluded that the generator represents good performance in both loads.
Torque Characteristic Analysis of Outer Rotor Permanent Magnet Generator for Low Head Hydro Power Application Irasari, Pudji; Hikmawan, Muhammad Fathul; Widiyanto, Puji
Jurnal IPTEK Vol 23, No 2 (2019)
Publisher : LPPM Institut Teknologi Adhi Tama Surabaya (ITATS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.iptek.2019.v23i2.524

Abstract

This paper analyzes the torque characteristics of outer rotor PMG for low head hydro power application. The aim is to prevent the generator torque from exceeding the turbine torque as the prime mover so that the system can work properly in both start and steady state conditions. The PMG is of outer rotor type and the torques are calculated analytically and numerically. The analysis is focused only on the PMG without connecting it to the turbine. Two analyzed torques include electromagnetic torque and starting torque, which comprises cogging torque, hysteresis torque and friction torque. The electromagnetic torque was obtained by loading the PMG with resistance and impedance (RL-LL in series) respectively. The results indicate that electromagnetic torque is the highest among all the investigated torques although its value is only 5.6% of the turbine torque, and cogging torque is the highest among the starting torque. From those results, it can be concluded that the hydro turbine torque can overcome the generator torque both at start and steady state conditions.
Desain dan Simulasi GMP Fluks Aksial Berbasis Dimensi Magnet Permanen Komersil IRASARI, PUDJI; WIDIYANTO, PUJI; HIKMAWAN, MUHAMMAD FATHUL
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 8, No 3: Published September 2020
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v8i3.602

Abstract

ABSTRAKMakalah ini membahas desain dan simulasi generator magnet permanen fluks aksial 500 W, 220 V, 500 rpm, 1 fasa, stator tunggal tanpa inti besi lunak dan rotor ganda berbahan baja karbon. Tujuan studi adalah untuk mengetahui performa generator pada dua jenis pembebanan yaitu beban RL dan ZL. Metode perhitungan desain dilakukan secara analitik dan numerik menggunakan perangkat lunak FEMM 4.2 dengan berbasis pada dimensi magnet permanen komersil. Performa generator yang dianalisis meliputi tegangan terminal, daya keluaran dan efisiensi. Hasil simulasi menunjukkan bahwa ketika diberi beban RL, daya keluaran dan efisiensi generator lebih tinggi dibanding ketika diberi beban ZL. Grafik tegangan terminal dari kedua jenis pembebanan tersebut sebagian berimpit tetapi pada beban RL tingkat penurunannya lebih tajam disebabkan tegangan jatuhnya lebih besar. Dari semua hasil perhitungan dan simulasi, dapat disimpulkan bahwa generator menunjukkan performa yang baik pada kedua jenis pembebanan dengan efisiensi sekitar 80%.Kata kunci: generator, magnet permanen, fluks aksial, stator tunggal, rotor ganda ABSTRACTThis paper discusses the design and simulation of 500 W, 220 V, 500 rpm axial flux permanent magnet generators, with the construction of coreless, single stator, and double rotor made of carbon steel. This study aims to find out the performance of the generators in two types of loadings, namely RL and ZL loads. The design calculation method is done analytically and numerically using FEMM 4.2 software based on the dimensions of commercial permanent magnets. The generator performances analyzed include the terminal voltage, the output power, and the efficiency. From the simulation results, it is known that under load RL, the output power and efficiency are higher than under load ZL. The terminal voltage graphs of the two types of loadings partially coincide but at the RL load, the rate of the decline is sharper due to the greater voltage drop. From all the results, it can be concluded that the generator shows good performance on both types of loads with a quite high efficiency, which is around 80%.Keywords: generator, permanent magnet, axial flux, single stator, double rotor
A double-Gaussian wake model considering yaw misalignment Soesanto, Qidun Maulana Binu; Soesanto, Qidir Maulana Binu; Widiyanto, Puji
International Journal of Renewable Energy Development Vol 14, No 1 (2025): January 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60690

Abstract

A wake steering has been known to effectively increase wind farm production by deflecting the upstream turbines’ wakes via yaw misalignment, thus minimizing their negative impacts on the downstream turbines' performances. This study presents analytical modeling of horizontal-axis wind turbine (HAWT) wake using low-cost analytical modeling as an alternative to expensive numerical and experimental trials. The existing double-Gaussian (DG) analytical wake model was modified to include the yaw misalignment effect, allowing its usability for the yawed HAWT wake modeling. The benchmark dataset produced by high-fidelity large eddy simulation (LES) of wake flowfields behind the turbine with yaw angles of 0º, 10º, 20º, and 30º were used to validate the accuracy of the DG yaw wake model. Overall, the DG yaw wake model predictions showed good agreement with the benchmark dataset under varying HAWT rotor yaw configurations. The analytical results verified by the LES dataset confirm the effectiveness of yaw misalignment in deflecting the wake trajectory, expediting the wake recovery downstream of the HAWT. In addition, a higher rotor yaw angle improves the wake recovery rate in the prevailing wind direction. Notable deviations against the benchmark dataset were found mainly within the near-wake region owing to flow acceleration arising from turbine-induced turbulence. As a result, the model’s predictions were slightly lower than the benchmark dataset, most likely due to neglecting the acceleration term in the analytical model derivation. Otherwise, the analytical model could accurately predict the mean wake velocity within the far-wake region for all evaluated cases, demonstrating its reliability in estimating wind speed potential within a practical distance for micrositing. These results were also proved quantitatively by statistical evaluations utilizing root mean square error (RMSE) and Pearson correlation coefficient R. The present study points out the importance of the upstream HAWTs’ rotor yaw controls to properly deflect their wakes away from their mainstream trajectories, thus effectively maximizing the wind speed potentials extracted by the downstream HAWTs and improving the overall wind farm production.
Permanent magnet generator performance comparison under different topologies and capacities Wirtayasa, Ketut; Kasim, Muhammad; Widiyanto, Puji; Muqorobin, Anwar; Wijanarko, Sulistyo; Irasari, Pudji
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1516-1527

Abstract

This paper compares the magnetic, electrical, and mechanical characteristics of two permanent magnet generator topologies: single-gap axial flux and single-gap inner rotor radial flux. The study aims to identify how the key parameters fluctuate at each power capacity and investigate the trends in their values as power changes. The power capacities observed are 300 W, 600 W, 900 W, 1200 W, and 1500 W. Simulations used with the help of Ansys Maxwell software to obtain: i) magnetic characteristics without load, including air gap flux density, flux linkage, and induced voltage, ii) electrical performance, consisting of armature current, terminal voltage, voltage regulation, total harmonic distortion, core loss and output power, and iii) mechanical performance, including shaft torque and cogging torque. The last step compares the power density of both topologies. The simulation results show that the axial flux permanent magnet generator (AFPMG) has better air gap flux density, voltage regulation, total harmonic distortion (THD), efficiency, electromagnetic torque, and power density characteristics. Meanwhile, the radial flux permanent magnet generator (RFPMG) is superior in induced voltage and output power. These results conclude that, in general, AFPMG is exceptional from a technical point of view and is more economical when applied to hydro or wind energy systems.