Claim Missing Document
Check
Articles

Found 9 Documents
Search

Analisis Postur Kerja Proses Manual Material Handling pada Penggilingan Padi di UD. XYZ Arifin, Riski; Saputra, Rizki Agam; Lufika, Raihan Dara; Qadrinadia, Ivana; Novianda, Dinda; Sulaeman, Sarah
Jurnal Optimalisasi Vol 8, No 1 (2022): April
Publisher : Universitas Teuku Umar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35308/jopt.v8i1.5270

Abstract

Manual material handling (MMH) merupakan suatu kegiatan memindahkan beban yang dilakukan oleh tubuh secara manual. Salah satu contoh dari pekerjaan manual material handling dilakukan pada industri penggilingan padi. Pekerja penggilingan padi akan berpotensi menimbulkan risiko terhadap bahaya fisik dalam hal keluhan nyeri punggung, bahu, lengan dan kaki atau dikenal dengan musculoskeletal disorders. Tujuan penelitian ini adalah menganalisis postur tubuh pekerja pada saat melakukan manual material handling dan menilai apakah postur kerja yang dilakukan oleh pekerja dapat menimbulkan risiko terjadinya musculoskeletal disorders atau tidak. Metode yang digunakan pada penelitian ini adalah Rapid Uper Limb Assessment (RULA) dan Rapid Entire Body Assessment (REBA) kedua metode tersebut merupakan evaluasi cepat yang digunakan untuk menilai suatu pekerjaan memiliki risiko gangguan sistem otot-rangka. Hasil yang diperoleh dengan menggunakan kedua metode menunjukkan bahwa hampir seluruh kegiatan yang didokumentasikan pada penelitian ini memiliki tingkat risiko yang cukup tinggi dan berbahaya sehingga dapat menimbulkan gangguan muculoskeletal bagi pekerjanya. Rata-rata score REBA adalah 9 dan rata-rata score RULA adalah 7, dimana kedua score ini sudah termasuk dalam risk level high. Oleh karena itu, perlu diadakan perbaikan dan perubahan pada tata cara kerja untuk mencegah terjadinya musculoskeletal disorders pada pekerja penggilingan padi di UD. XYZ.
ANALISIS MANAJEMEN PERGUDANGAN PADA GUDANG VMI (VENDOR MANAGED INVENTORY) DAN NON-VMI INDUSTRI ELEKTRONIK Lufika, Raihan Dara; Izzaty, Nur; Suhendrianto, Suhendrianto; Arifin, Riski; Hamidah, Siti
JURNAL REKAYASA SISTEM INDUSTRI Vol 9 No 1 (2023): November 2023
Publisher : Universitas Putera Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33884/jrsi.v9i1.5504

Abstract

The rapid development of industry in the modern era has resulted in increasingly fierce competition between manufacturing and service companies, encouraging companies to compete to provide superiority to consumers. A warehouse is one part that has a vital role in ensuring the smooth running of production activities. The purpose of the warehouse in this research object is as a place to receive raw materials, WIP (Work In Process) and finished goods from manufacturers, maintain stock accuracy based on planning, maintain good quality and control stock properly for export. The object observed is warehousing management in Vendor Managed Inventory (VMI) and Non-VMI warehouses. The problem that occurs is that the material is not placed in its place due to the addition of several new models. The results of the observations were analyzed using a tree diagram. Analysis of the root causes of the problem using a tree diagram obtained four main factors causing the problem, namely humans, SOPs, materials and the environment. The root causes of the four factors are the lack of communication and information between staff, the staff having multiple jobs, so the focus is divided, the flow of goods in and out does not follow the FIFO rules, the absence of temporary storage areas, not an optimal use of the warehouse and the addition of new models, causing the need for there is an improvement in the layout of the Non-VMI warehouse.
Penerapan Algoritma Evolutionary dan Nearest Neighbor untuk Optimasi Rute Distribusi Utami, Rika Sri; Arifin, Riski; Lufika, Raihan Dara; Dio, Rafi; Manihuruk, Hendrik Vicarlo Saragih
Go-Integratif : Jurnal Teknik Sistem dan Industri Vol 5 No 02 (2024): Go-Integratif : Jurnal Teknik Sistem dan Industri
Publisher : Engineering Faculty at Universitas Singaperbangsa Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35261/gijtsi.v5i02.12518

Abstract

The distribution route is a common issue faced by companies. Companies need to distribute goods to optimize delivery and operational shipping costs. Company XYZ distributes goods to 9 retailers. The problem encountered is that delivery relies only on the intuition of the delivery operators, which is considered suboptimal. Therefore, finding the shortest distribution distance is necessary, one of which can be done using an evolutionary algorithm. An evolutionary algorithm is a population-based stochastic search used to find optimal solutions to a problem. Additionally, distributing goods using the nearest neighbor method determines the route based on the shortest distance between retailers. Thus, the purpose of this study is to find the shortest distribution distance for goods delivered to 9 retailers using an evolutionary algorithm and the nearest neighbor method. The results show that using the evolutionary algorithm, the minimum total distance is 54.5 kilometers, with the route being warehouse-2-1-5-9-4-6-7-3-8-warehouse, while using the nearest neighbor method yields a distance of 55 kilometers, resulting in a difference of 0.5 kilometers.
Sentiment Analysis on Tabungan Perumahan Rakyat (TAPERA) Program by using Support Vector Machine (SVM) Syahputra, Rizki Agam; Arifin, Riski; ., Suryadi; Iqbal, Muhammad
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8694

Abstract

This study aims to analyze public sentiment towards the Housing Savings Program (TAPERA) using the Support Vector Machine (SVM) algorithm. The dataset comprises 16,061 reviews about TAPERA which was gathered from web scrapping and YouTube API. The sentiment analysis results indicate that 99.8% of the reviews are negative, while only 0.2% are positive. The SVM model applied in this study achieved a very high accuracy rate of 99.81%. This indicates that the model is highly effective in classifying sentiments, particularly in identifying negative sentiments. The resulting confusion matrix shows the model's excellent performance in detecting negative sentiments, with no False Positives (FP) and a very high number of True Negatives (TN). However, the model exhibits weaknesses in detecting positive sentiments, as indicated by the presence of several False Negatives (FN) and the absence of True Positives (TP). The findings of this study suggest that the public generally holds a very negative view of the TAPERA program. This insight is crucial for program administrators to consider as they evaluate and improve the program based on negative feedback received from the public. Overall, this research provides important insights into public perceptions of TAPERA and underscores the need for better modeling for more representative sentiment analysis. These findings can serve as a basis for policymakers in designing more effective communication strategies and program improvements to increase public acceptance of TAPERA.
Analysis of Factors Affecting Workforce Productivity in the Steel Tower Production Division of PT X Syahputra, Rizki Agam; Arifin, Riski; Pamungkas, Iing; Ridha, Arrazy Elba; Irawan, Risnadi; Nova, Nova
Jurnal Industri dan Inovasi (INVASI) Vol 2, No 2 (2025): Maret
Publisher : Universitas Teuku Umar

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study analyzes the impact of age, wages, work environment, working hours, and work experience on workforce productivity in the Steel Tower Production Division of PT X using multiple linear regression (SPSS 16). The analysis includes validity, reliability, multicollinearity, heteroscedasticity, and hypothesis testing. Results show no multicollinearity or heteroscedasticity issues. The R² value (0.545) indicates that 54.5% of productivity variance is explained by the independent variables, while 45.5% is influenced by other factors. However, F-test and T-test results indicate that none of the variables significantly affect productivity.This suggests that other factors, such as motivation or job satisfaction, may play a larger role. Future research should explore these aspects to gain deeper insights.
Optimalisasi Pemanfaatan Solar Panel untuk Efisiensi Energi dan Penghematan Biaya Listrik Rumah Tangga Utami, Rika Sri; Arifin, Riski; Bakri, Al Hilal
Jurnal Optimalisasi Vol 11, No 1 (2025): April
Publisher : Universitas Teuku Umar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35308/jopt.v11i1.11697

Abstract

Energi berkelanjutan menjadi perhatian utama dalam upaya mengurangi ketergantungan pada sumber energi konvensional. Pemanfaatan energi matahari melalui solar panel semakin berkembang sebagai solusi yang ramah lingkungan dan ekonomis. Kota Banda Aceh memiliki rata-rata paparan sinar matahari sebesar 5,10 kWh/m²/hari pada tahun 2024, sehingga berpotensi untuk dikonversi menjadi listrik. Penelitian ini bertujuan untuk menganalisis efisiensi penggunaan solar panel dalam memenuhi kebutuhan listrik rumah tangga sebesar 9,2 kWh/hari serta menghitung payback period pengembalian investasi dari pemasangan solar panel. Penelitian dilakukan secara kuantitatif melalui simulasi perolehan energi dan ekonomi rancangan PLTS. Software RETScreen digunakan untuk potensi energi pada lokasi penelitian. Hasil simulasi rancangan PLTS kemudian dianalisis dan dibandingkan terhadap penelitian dengan sistem serupa.   Hasil penelitian menunjukkan bahwa penggunaan satu unit solar panel dapat mengurangi biaya konsumsi listrik sebesar 27,9% per hari. Selain itu, dengan penggunaan 4 hingga 5 panel, energi yang dihasilkan dapat melebihi kebutuhan rumah tangga atau menghasilkan surplus listrik. Periode pengembalian investasi dari pemasangan solar panel ini diperkirakan memerlukan waktu antara 16 hingga 20 tahun.
University Students Stress Detection During Final Report Subject by Using NASA TLX Method and Logistic Regression Khairah, Alfita; Melinda; Hasanuddin, Iskandar; Asmadi, Didi; Arifin, Riski; Miftahujjannah, Rizka
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6401

Abstract

Stress is a psychological response that occurs when someone faces pressure or demands that exceed their ability to adapt. In the context of a final-year student, stress is often a significant problem due to academic pressure, such as completing final assignments, as well as demands to immediately prepare to enter the workforce and demands to immediately prepare to enter the workforce. Research shows that stress that is not managed properly can cause various negative effects, such as sleep disorders and decreased cognitive function. This study aimed to identify and analyze stress levels among final-year students who completed a final report by integrating physiological and psychological data. In this study, 30 students were assessed using a wearable system to obtain physiological data, such as heart rate and body temperature, while subjective assessments were carried out using the NASA-TLX method to measure mental workload. The results showed that 19 out of 30 respondents experienced significant levels of stress and 11 respondents were in normal conditions, with the main causal factors including high academic pressure and distance regarding the future. In addition, the logistic regression analysis applied in this study succeeded in developing a predictive model with an accuracy of 94% in identifying students' stress conditions. This shows that this method is sufficiently accurate for detecting stress symptoms in final-year students.
Peningkatan Numerasi di Sekolah Tertinggal dengan Program MBKM Kampus Mengajar Utami, Rika Sri; Arifin, Riski; Sabrina, Nur Irhamni; Syaubari, Syaubari; Hadi, Tjut Rizqi Maysyarah; Isra, Muhammad
SMART: Jurnal Pengabdian Kepada Masyarakat Vol 5, No 1 (2025): April
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/smart.v5i1.71612

Abstract

Penelitian ini membahas implementasi program MBKM Kampus Mengajar dalam meningkatkan kemampuan numerasi siswa di sekolah tertinggal. Program ini memberikan kesempatan bagi mahasiswa untuk berkontribusi dalam pembelajaran di sekolah yang memiliki keterbatasan akses pendidikan. Melalui kegiatan selama 16 minggu di salah satu SDN wilayah Aceh Besar, mahasiswa membantu meningkatkan pemahaman siswa terhadap operasi matematika dasar, bangun datar, dan perhitungan sederhana. Berbagai metode diterapkan, termasuk penggunaan alat peraga, permainan edukatif, serta teknik pembelajaran interaktif. Hasil penelitian menunjukkan adanya peningkatan signifikan dalam kemampuan numerasi siswa kelas 1 hingga 6, yang ditunjukkan dengan peningkatan pemahaman konsep dasar matematika dan meningkatnya kepercayaan diri siswa dalam belajar. Temuan ini mengindikasikan bahwa keterlibatan mahasiswa melalui program Kampus Mengajar dapat menjadi model efektif dalam mendukung pendidikan di daerah tertinggal dan mengurangi kesenjangan akses serta kualitas pembelajaran.
Evaluasi Beban Kerja Mental Mahasiswa Tingkat Akhir dengan Subjective Scale of Mental Workload (ESCAM) Arifin, Riski; Ayu Angrayni, Septi
Jurnal Rekayasa Teknologi Nusa Putra Vol 11 No 1 (2025): Februari 2025
Publisher : Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/rekayasa.v11i1.573

Abstract

Penyelesaian tugas akhir merupakan salah satu tahapan krusial dalam studi mahasiswa, namun sering kali memberikan beban kerja mental yang signifikan. Penelitian ini bertujuan untuk mengevaluasi beban kerja mental mahasiswa dalam penyelesaian tugas akhir menggunakan metode Subjective Scale of Mental Workload (ESCAM). Metode ini menilai lima faktor utama yang mempengaruhi beban kerja mental, yaitu Cognitive Demands and Task Complexity, Health Consequences, Task Characteristics, Time Organization, dan Working Speed. Studi ini dilakukan dengan pendekatan deskriptif kuantitatif pada 55 mahasiswa yang telah menyelesaikan tugas akhirnya. Hasil penelitian menunjukkan bahwa faktor Cognitive Demand memiliki pengaruh terbesar terhadap beban kerja mental mahasiswa dengan nilai rata-rata 4,091 (kategori tinggi), sedangkan faktor Working Speed memiliki pengaruh terendah dengan nilai rata-rata 3,248 (kategori sedang). Terdapat pula perbedaan pengaruh faktor berdasarkan gender, di mana mahasiswa perempuan memiliki tingkat beban kerja mental lebih tinggi dibandingkan laki-laki dalam beberapa faktor. Hasil penelitian ini diharapkan dapat menjadi dasar dalam penyusunan strategi manajemen tugas akhir yang lebih efektif untuk mengurangi beban mental mahasiswa.