Claim Missing Document
Check
Articles

Found 5 Documents
Search

The Design of Digital Liquid Density Meter Based on Arduino Megantoro, Prisma; Widjanarko, Andrei; Rahim, Robbi; Kunal, Kunal; Zuhri Arfianto, Afif
Journal of Robotics and Control (JRC) Vol 1, No 1 (2020): January
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1101

Abstract

A measure of liquid thickness is needed to make a dough or formula for medicinal syrup. The tools to measure the thickness available in the market are analog that is less accurate and precision. To overcome these problems, digital density measuring devices are needed. The limitation of the digital density meter, especially liquid, urges the author to carry out further research on the digitization of this measuring instrument. This research aims to make a digital density meter for liquid matter with a high level of measurement accuracy, as the reference measurement study for liquid density in digital form. The instrument was designed using the load cell method as the main sensor. It was also equipped with a DS18B20 water-resistant temperature sensor to measure the temperature of the liquid. The data were analyzed to obtain the accuracy and error of the liquid density measurement from the density meter. The liquid samples used for research were Pertamax, solar, and water. Sample accuracy and error measurement results were 99.83 percent and 0.17 percent respectively for Pertamax, 99.63 percent and 0.37 percent for solar and 99.46 percent and 0.54 percent for water. The measured density value was finally shown on the 16x2 LCD.
Implementation of Line Follower Robot based Microcontroller ATMega32A Latif, Abdul; Agus Widodo, Hendro; Rahim, Robbi; Kunal, Kunal
Journal of Robotics and Control (JRC) Vol 1, No 3 (2020): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1316

Abstract

The development of technology in the field of robotics is very fast, but in the eastern regions of Indonesia, namely the development of the development has not yet felt the impact. Especially in the university's electrical laboratory Musamus Merauke learning media devices for microcontrollers are also not yet available, therefore the author wants to pioneer by implementing the simplest robot design, the line follower robot, where the robot only goes along the lines. This study uses an experimental method, by conducting a research process based on sequences, namely: needs analysis, mechanical chart design, electronic part design and control program design, manufacturing, and testing. The line follower robot based on ATmega32A microcontroller has been tested and the results show that the line follower robot can walk following the black line on the white floor and can display the situation on the LCD. But this line follower robot still has shortcomings in the line sensor sensitivity process depending on a certain speed. At speeds of 90-150 rpm the line follower robot can follow the path, while more than 150 rpm the robot is not able to follow the path.
The Design of Tympani Thermometer Using Passive Infrared Sensor Wijaya, Nur Hudha; Oktavihandani, Zanella; Kunal, Kunal; T.Helmy, Elsayed; Thanh Nguyen, Phong
Journal of Robotics and Control (JRC) Vol 1, No 1 (2020): January
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1106

Abstract

Measuring body temperature depends on the type of thermometer and measured body area. A thermometer placed on the tympanic membrane is considered ideal because the tympanic membrane and hypothalamus have arterial blood supply originating from the carotid artery (neck). Therefore, it is considered directly close to the core temperature. The Tympani Thermometer with external storage can facilitate the doctor's performance in diagnosing patients. This tool is designed using the MLX90614 sensor as a passive infrared sensor that can receive infrared energy from the tympanic membrane. The study aims to design a tympani thermometer. It compared the measurement results of the designed tool with ear thermometers that have been calibrated to get the error value. Based on the results, this prototype works well and has an error of 0.7°C in the left ear and an error of 0.24°C in the right ear.
Accelerometer Implementation as Feedback on 5 Degree of Freedom Arm Robot Kunal, Kunal; Zuhri Arfianto, Afif; Eko Poetro, Joessianto; Waseel, Farhad; Andri Atmoko, Rachmad
Journal of Robotics and Control (JRC) Vol 1, No 1 (2020): January
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1107

Abstract

The research investigated the automatic control system implemented with the 5 DOF (Degree of Freedom) arm robot control system using the closed-loop control method with the MPU 6050 sensor, which integrated the rotation of the MG995 motor servo as a feedback function. The control of this robot used android–based application, in which the app sends data of the rotate angle for each servo motor rotated to a certain angle. The HC – 05 Bluetooth received the data and the Arduino UNO R3 microcontroller processed them. The microcontroller managed every rotation of each servo motor that integrated with an MPU6050 sensor with serial monitor communication to display the rotation of each servo motor. The test results obtained by the standard deviation value showed how large the sample diversity was. The result of this study showed a standard deviation correlation with the number of sample diversity. The higher the standard deviation value, the more sample data spread (data diverse or varies). Otherwise, the smaller the standard deviation value, the more homogenous the sample data. If the standard deviation equals zero, it indicates that the sample has identical data. The highest standard deviation value from servo motor 1 is 5.20, servo motor 2 and 3 are 1.00, servo motor 4 is 2.89, and servo motor 5 is 2.9
Gas Pressure Measurement Device and Medical Vacuum Design Padang Tunggal, Tatiya; Sanjaya, Alfana; Agus Widodo, Hendro; Kunal, Kunal; Thanh Nguyen, Phong
Journal of Robotics and Control (JRC) Vol 1, No 2 (2020): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1208

Abstract

Two methods are used in a digital pressure meter available in the market, namely positive pressure, and negative pressure. The positive one is used to measure the air pressure on a sphygmomanometer and medical gas pressure at an outlet in the treatment room so that operators can easily check medical gas pressure for the safety of the patient, or they can routinely check to find out how much pressure of the medical gas. Based on the background, the research aimed to design a digital pressure meter equipped with a medical gas measurement mode so that the device can be used to calibrate the sphygmomanometer, suction pump, and measure the medical gas pressure available at the medical gas outlet in each treatment room.