Academia.eduAcademia.edu

Outline

Diamond Ablators for Inertial Confinement Fusion

2006, Fusion Science and Technology

https://doi.org/10.13182/FST49-737

Abstract

Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

FAQs

sparkles

AI

What unique properties make diamond suitable for ICF ablators?add

Diamond exhibits high energy absorption efficiency, thermal conductivity up to 23 W cm -1 K -1 at 300 K, and an atomic density that reduces Rayleigh-Taylor instabilities.

How does the diamond coating process impact surface roughness for ICF applications?add

RMS roughness achieved post-polishing was <20 nm on a mm length scale, which meets NIF standards.

What deposition rate was achieved for diamond films, and under what conditions?add

A deposition rate of ~2 μm/h was achieved using a microwave reactor with a mixture of 1% methane in hydrogen at 700-900 °C.

What challenges exist in fabricating diamond ablators compared to other materials?add

Challenges include achieving uniform coatings on spherical substrates and maintaining low roughness, with polishing techniques still under development.

How do nanocrystalline diamond films compare to coarse-grained diamonds in ICF applications?add

Nanocrystalline diamond films have lower deposition rates (~165 nm/h), but exhibit smoother surfaces and reduced stress, making them advantageous in specific applications.

References (24)

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
  2. S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. V. Coggeshall, D. B. Harris, N. M. Hoffman, and B. H. Wilde, "Design and Modeling of Ignition Targets for the National Ignition Facility," Physics of Plasmas 2(6), 2480-2487 (1995).
  3. T. R. Dittrich, S. W. Haan, M. M. Marinak, D. E. Hinkel, S. M. Pollaine, R. McEachern, R. C. Cook, C. C. Roberts, D. C. Wilson, P. A. Bradley, and W. S. Varnum, "Capsule design for the National Ignition Facility," Laser and Particle Beams 17(2), 217-224 (1999).
  4. S. W. Haan, T. Dittrich, G. Strobel, S. Hatchett, D. Hinkel, M. Marinak, D. Munro, O. Jones, S. Pollaine, and L. Suter, "Update on ignition target fabrication specifications," Fusion Science and Technology 41(3), 164-173 (2002).
  5. S. W. Haan, P. A. Amendt, T. R. Dittrich, B. A. Hammel, S. P. Hatchett, M. C. Herrmann, O. A. Hurricane, O. S. Jones, J. D. Lindl, M. M. Marinak, D. Munro, S. M. Pollaine, J. D. Salmonson, G. L. Strobel, and L. J. Suter, "Design and simulations of indirect drive ignition targets for NIF," Nuclear Fusion 44(12), S171-S176 (2004).
  6. S. W. Haan, P. A. Amendt, T. R. Dittrich, S. P. Hatchett, M. C. Herrmann, O. A. Hurricane, M. M. Marinak, D. Munro, S. M. Pollaine, G. A. Strobel, and L. J. Suter, "Update on NIF indirect drive ignition target fabrication specifications," Fusion Science and Technology 45(2), 69-73 (2004).
  7. G. L. Strobel, S. W. Haan, and T. R. Dittrich, "Low mode surface perturbation tolerance of ignition capsule implosions for the National Ignition Facility," Physics of Plasmas 11(4), 1617-1621 (2004).
  8. G. L. Strobel, S. W. Haan, D. H. Munro, and T. R. Dittrich, "Design of a 250 eV cryogenic ignition capsule for the National Ignition Facility," Physics of Plasmas 11(9), 4261-4266 (2004).
  9. R. B. Stephens, S. W. Haan, and D. C. Wilson, "Characterization specifications for baseline indirect drive NIF targets," Fusion Science and Technology 41(3), 226-233 (2002).
  10. M.C. Herrmann, private communication
  11. C. Wild and P. Koidl, "Optical Properties of Diamond and Applications as Radiation Windows," in Properties, Growth and Applications of Diamond, M. H. Nazare and A. J. Neves, eds. (INSPEC, London, 2001), pp. 351-355.
  12. D. R. Linde, ed., Handbook of Chemistry and Physics, 84th ed. (CRC Press, Boca Raton, 2003).
  13. S. O. Kucheyev, J. Biener, J. W. Tringe, Y. M. Wang, P. B. Mirkarimi, T. van Burren, S. L. Baker, A. V. Hamza, K. Bruehne, and H.-J. Fecht, "Ultra-thick, low stress nanostructured diamond films," Applied Physics Letters 86, 221914 (2005).
  14. M. Funer, C. Wild, and P. Koidl, "Novel microwave plasma reactor for diamond synthesis," Applied Physics Letters 72(10), 1149-1151 (1998).
  15. E. Woerner, C. Wild, W. Mueller-Sebert, and P. Koidl, "CVD-diamond optical lenses," Diamond and Related Materials 10(3-7), 557-560 (2001).
  16. N. Axen, "Methode and Means for Grinding Balls of Ceramics or other Hard Materials to Spherical Shape," WO9919115A1 (1999).
  17. J. Taniguchi, N. Ohno, S. Takeda, I. Miyamoto, and M. Komuro, "Focused-ion- beam-assisted etching of diamond in XeF2," Journal of Vacuum Science & Technology B 16(4), 2506-2510 (1998).
  18. A. Stanishevsky, "Patterning of diamond and amorphous carbon films using focused ion beams," Thin Solid Films 398, 560-565 (2001).
  19. P. Muthukumaran, I. Stiharu, and R. B. Bhat, "Gas-phase xenon difluoride etching of microsystems fabricated through the Mitel 1.5-mu m CMOS process," Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique Et Informatique 25(1), 35-41 (2000).
  20. T. Hoshino, M. Kawamori, T. Suzuki, S. Matsui, and K. Mabuchi, "Three- dimensional and multimaterial microfabrication using focused-ion-beam chemical-vapor deposition and its application to processing nerve electrodes," Journal of Vacuum Science & Technology B 22(6), 3158-3162 (2004).
  21. T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ichihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, "Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition," Journal of Vacuum Science & Technology B 21(6), 2737-2741 (2003).
  22. D. K. Bradley, J. H. Eggert, D. G. Hicks, P. M. Celliers, S. J. Moon, R. C. Cauble, and G. W. Collins, "Shock compressing diamond to a conducting fluid," Physical Review Letters 93(19)(2004).
  23. W. J. Nellis, A. C. Mitchell, and A. K. McMahan, "Carbon at pressures in the range 0.1-1 TPa (10 Mbar)," Journal of Applied Physics 90(2), 696-698 (2001).
  24. L. E. Fried and W. M. Howard, "Explicit Gibbs free energy equation of state applied to the carbon phase diagram," Physical Review B 61(13), 8734-8743 (2000).