Academia.eduAcademia.edu

Outline

Synergism of microwaves and ultrasound for advanced biorefineries

https://doi.org/10.1016/J.REFFIT.2015.10.001

Abstract

Conventional energy sources are limited and non-renewable and their consumption contributes to greenhouse gas emissions. The world is in need of advanced biorefineries to meet ever growing energy demands associated with population growth and economic development. An advanced biorefinery should use renewable and sustainable (both in quality and quantity) feedstock that gives rise to higher energy gains with minimum non-renewable energy and resource consumption. Development of advanced biorefineries is currently encircled by two major issues. The first issue is to ensure adequate biofuel feedstock supplies while the second issue is to develop resource-efficient technologies for the feedstock conversion to maximize energy and economic and environmental benefits. While microalgae, microbial derived oils, and agricultural biomass and other energy crops show great potential for meeting current energy demands in a sustainable manner, process intensification and associated synergism can improve the resource utilization efficiency. Synergism of process intensification tools is important to increase energy efficiency, reduce chemical utilization and associated environmental impacts, and finally process economics. Among the many process intensification methods, this commentary provides a perspective on the essential role of MWs and US and their synergy in biofuel production. Individual, sequential, and simultaneous applications of MWs and US irradiations can be utilized for process intensification of various biofuels production and selective recovery of high value bioproducts. Process related barriers, namely mass and heat transfer limitations, can be eliminated by this synergism while improving the reaction efficiency and overall process economics significantly. In this article, a brief review focused on recent developments in MW and US mediated process intensification for biofuel synthesis and associated issues in their synergism followed by a discussion on current challenges and future prospective is presented.

References (61)

  1. BP statistical review of world energy. <http://bp.com/statisticalreview>, June 2015.
  2. USDoE, Alternative fuels data center. <http://www.afdc.energy.gov/fuels/ fuel_comparison_chart.pdf> (accessed 07.10.15), 2014
  3. R. Tidball, J. Bluestein, N. Rodriguez, S. Knoke, Cost and performance assumptions for modeling electricity generation technologies, Contract 303 (2010) 275-3000.
  4. B.E. Rittmann, Opportunities for renewable bioenergy using microorganisms, Biotechnol. Bioeng. 100 (2008) 203-212.
  5. V.G. Gude, P.D. Patil, S. Deng, N. Nirmalakhandan, MW enhanced methods for biodiesel production and other environmental applications, in: Green Chemistry for Environmental Remediation, Wiley Interscience, New York, 2011, pp. 209-249.
  6. Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv. 25 (3) (2007) 294-306.
  7. V.G. Gude, G.E. Grant, P.D. Patil, S. Deng, Biodiesel production from low cost and renewable feedstock, Open Eng. 3 (4) (2013) 595-605.
  8. European Roadmap for Process Intensification, Creative Energy, The Netherlands, 2007.
  9. K. Huang, S.J. Wang, L. Shan, Q. Zhu, J. Qian, Seeking synergistic effect -a key principle in process intensification, Sep. Purif. Technol. 57 (2007) 111-120.
  10. A.I. Stankiewicz, J.A. Moulijn, Process intensification: transforming chemical engineering, Chem. Eng. Process 96 (2010) 22-34.
  11. E. Martinez-Guerra, V.G. Gude, Synergistic effect of simultaneous MW and US irradiations on transesterification of waste vegetable oil, Fuel 137 (2014) 100-108.
  12. T. Gerven, A. Stankiewicz, Structure, energy, synergy, time-the fundamentals of process intensification, Ind. Eng. Chem. Res. 48 (2009) 2465-2475.
  13. A. Stankiewicz, Energy matters: alternative sources and forms of energy for intensification of chemical and biochrmical processes, Chem. Eng. Res. Des. 84 (2006) 511-521.
  14. V.G. Gude, P.D. Patil, E. Martinez-Guerra, S. Deng, N. Nirmalakhandan, MW energy potential for biodiesel production, Sustain. Chem. Process. 1 (2013) 1-31.
  15. A. Robert, M.W. England Synthesis: a new wave of synthetic organic chemistry. LabPlus international, April/May 2003.
  16. V.G. Gude, G.E. Grant, Biodiesel from waste cooking oils via direct sonication, Appl. Energy 109 (2013) 135-144.
  17. J. Luo, Z. Fang, R.L. Smith, US-enhanced conversion of biomass to biofuels, Prog. Energy Combust. Sci. 41 (2014) 56-93.
  18. V.G. Gude, E. Martinez-Guerra, Green chemistry of MW-enhanced biodiesel production, in: Production of Biofuels and Chemicals with MW, Springer, The Netherlands, 2015, pp. 225-250.
  19. G. Cravotto, P. Cintas, The combined use of MWs and US: improved tools in process chemistry and organic synthesis, Chem. Eur. J. 13 (2007) 1902-1909.
  20. P. Patil, V.G. Gude, S. Pinappu, S. Deng, Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and MW heating conditions, Chem. Eng. J. 168 (2011) 1296-1300.
  21. E. Martinez-Guerra, V.G. Gude, Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous MW and US irradiations, Energy Convers. Manag. 88 (2014) 633-640.
  22. E. Martinez-Guerra, V.G. Gude, Continuous and pulse sonication effects on transesterification of used vegetable oil, Energy Convers. Manag. 96 (2015) 268-276.
  23. F. Chemat, M. Poux, J.L. Di Martino, J. Berlan, An original MW-US combined reactor suitable for organic synthesis: application to pyrolysis and esterification, J. MW Power Electromagn. Energy 31 (1996) 19- 22.
  24. A. Lagha, S. Chemat, P.V. Bartels, F. Chemat, MW-US combined reactor suitable for atmospheric sample preparation procedure of biological and chemical products, Analusis 27 (1999) 452-457.
  25. S. Chemat, A. Lagha, H.A. Amar, F. Chemat, US assisted MW digestion, Ultrason. Sonochem. 11 (2004) 5-8.
  26. G. Cravotto, L. Boffa, S. Mantegna, P. Perego, M. Avogadro, P. Cintas, Improved extraction of vegetable oils under high-intensity US and/or MWs, Ultrason. Sonochem. 15 (2008) 898-902.
  27. V.L. Gole, P.R. Gogate, Intensification of synthesis of biodiesel from non-edible oil using sequential combination of MW and US, Fuel Process. Technol. 106 (2013) 62-69.
  28. A. Guldhe, B. Singh, I. Rawat, F. Bux, Synthesis of biodiesel from Scenedesmus sp. by MW and US assisted in situ transesterification using tungstated zirconia as a solid acid catalyst, Chem. Eng. Res. Des. 92 (2014) 1503-1511.
  29. S.A. Fast, B. Kokabian, V.G. Gude, Chitosan enhanced coagulation of algal turbid waters-comparison between rapid mix and US coagulation methods, Chem. Eng. J. 244 (2014) 403-410.
  30. S.A. Fast, V.G. Gude, US-chitosan enhanced flocculation of low algal turbid waters, J. Ind. Eng. Chem. 24 (2015) 153-160.
  31. H.K. Reddy, T. Muppaneni, P.D. Patil, S. Ponnusamy, P. Cooke, T. Schaub, et al., Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions, Fuel 115 (2014) 720-726.
  32. M. Balat, H. Balat, Recent trends in global production and utilization of bio-ethanol fuel, Appl. Energy 86 (2009) 2273-2282.
  33. M.J. Bussemaker, D. Zhang, Effect of US on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications, Ind. Eng. Chem. Res. 52 (2013) 3563-3580.
  34. M.J. Taherzadeh, K. Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, Int. J. Mol. Sci. 9 (2008) 1621-1651.
  35. S. Nikolic ´, L. Mojovic ´, M. Rakin, D. Pejin, J. Pejin, Utilization of MW and US pretreatments in the production of bioethanol from corn, Clean Technol. Environ. Policy 13 (2011) 587-594.
  36. E.W. Flosdorf, L.A. Chambers, The chemical action of audible sound, J. Am. Chem. Soc. 55 (1933) 3051-3052.
  37. J.H. Choi, S.B. Kim, Effect of US on sulfuric acid-catalysed hydrolysis of starch, Korean J. Chem. Eng. 11 (1994) 178-184.
  38. S. Koda, K. Taguchi, K. Futamura, Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers, Ultrason. Sonochem. 18 (2011) 276-281.
  39. G. Portenlänger, H. Heusinger, The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes, Ultrason. Sonochem. 4 (1997) 127-130.
  40. R. Czechowska-Biskup, B. Rokita, S. Lotfy, P. Ulanski, J.M. Rosiak, Degradation of chitosan and starch by 360-kHz US, Carbohydr. Poly. 60 (2005) 175-184.
  41. A.R. Khan, J.A. Johnson, R.J. Robinson, Degradation of starch polymers by MW energy, Cereal Chem. 56 (1979) 303-304.
  42. A.R. Khan, R.J. Robinson, J.A. Johnson, Starch hydrolysis by acid and MW energy, J. Food Sci. 45 (1980) 1449.
  43. L. Kunlan, X. Lixin, L. Jun, P. Jun, C. Guoying, X. Zuwei, Salt-assisted acid hydrolysis of starch to -glucose under MW irradiation, Carbohydr. Res. 331 (2001) 9-12.
  44. A. Hernoux-Villière, U. Lassi, T. Hu, A. Paquet, L. Rinaldi, G. Cravotto, et al., Simultaneous MW/US-assisted hydrolysis of starch-based industrial waste into reducing sugars, ACS Sustain. Chem. Eng. 1 (2013) 995-1002.
  45. X.-F. Shen, Combining MW and US irradiation for rapid synthesis of nanowires: a case study on Pb(OH)Br, J. Chem. Technol. Biotechnol. 84 (2009) 1811-1817.
  46. Y. Peng, G. Song, Combined MW and US assisted Williamson ether synthesis in the absence of phase-transfer catalysts, Green Chem. 4 (2002) 349-351.
  47. G. Cravotto, M. Beggiato, A. Penoni, G. Palmisano, S. Tollari, J.-M. Levéque, et al., High-intensity US and MW, alone or combined, promote Pd/C-catalyzed Aryl-aryl Couplings, Tetrahedron Lett. 46 (2005) 2267-2271.
  48. G. Cravotto, L. Boffa, J. Levé que, J. Estager, M. Draye, W. Bonrath, A speedy one-pot synthesis of second-generation ionic liquids under US and/or MW irradiation, Aust. J. Chem. 60 (2007) 946-950.
  49. A. C ˇízova, I. Srokova, V. Sasinkova, A. Malovíkova, A. Ebringerova, Carboxymethyl starch octenylsuccinate: MW-and US-assisted synthesis and properties, Starch/Staerke 60 (2008) 389-397.
  50. Z. Lianfu, L. Zelong, Optimization and comparison of US/MW assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes, Ultrason. Sonochem. 15 (2008) 731-737.
  51. Y. Hu, T. Wang, W. Mingxiao, S. Han, P. Wan, M. Fan, Extraction of isoflavonoids from pueraria by combining US with MW vacuum, Chem. Eng. Process 47 (2008) 2256-2261.
  52. S.K. Khanal, D. Grewell, S. Sung, J. Van Leeuwen, US applications in wastewater sludge pretreatment: a review, Crit. Rev. Environ. Sci. and Tech. 37 (2007) 277-313.
  53. M. Saha, C. Eskicioglu, J. Marin, MW, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge, Bioresour. Technol. 102 (2011) 7815-7826.
  54. T.J. Mason, F. Chemat, M. Vinatoru, The extraction of natural products using US or MWs, Curr. Org. Chem. 15 (2011) 237-247.
  55. E. Martinez-Guerra, V.G. Gude, A. Mondala, W. Holmes, R. Hernandez, Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent, Bioresour. Technol. 156 (2014) 240-247.
  56. E. Martinez-Guerra, V.G. Gude, Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures, Waste Manage. 34 (12) (2014) 2611-2620.
  57. R.R. Ruan, P. Chen, R. Hemmingsen, V. Morey, D. Tiffany, Size matters: small distributed biomass energy production systems for economic viability, Int. J. Agric. Biol. Eng. 1 (1) (2008) 64-68.
  58. V.L. Gole, P.R. Gogate, A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors, Chem. Eng. Process 53 (2012) 1-9.
  59. G.E. Grant, V.G. Gude, Kinetics of ultrasonic transesterification of waste cooking oil, Environ. Prog. Sustain. Energy 33 (3) (2014) 1051-1058.
  60. M.J. Bussemaker, F. Xu, D. Zhang, Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring, Bioresour. Technol. 148 (2013) 15-23.
  61. P. Cintas, S. Mantegna, E.C. Gaudino, G. Cravotto, A new pilot flow reactor for high-intensity US irradiation -application to the synthesis of biodiesel, Ultrason. Sonochem. 17 (2010) 985-989.