Suppose A is a $n\times n$ square matrix$$A= \begin{bmatrix} 0 &1 &0 &\cdots &0\\ 0 &0 &1&\cdots &0\\ \vdots &\vdots&\vdots & &\vdots\\ 0&0&0&\cdots&1\\ 1 &0&0&\cdots&0 \end{bmatrix} $$ How to prove A is a irreducible a matrix.
A is irreducible if and if only $(I+A)^{n-1}$ is a postive matrix which means that all the entris is positive. Note that $(I+A)^{n-1}=\sum_{k=0}^{n-1} \binom {n-1} {k}A^k$ and A is nonnegative, thus $A$ is irreducible if and only if $\sum_{k=0}^{n-1}A^k$ is a positive matrix.