Google Japan Turn Out Another Keyboard, And It’s A Dial

There’s a joke that does the rounds, about a teenager being given a dial phone and being unable to make head nor tail of it.  Whether or not it’s true, we’re guessing that the same teen might be just a stumped by this year’s keyboard oddity from Google Japan. It replaces keys with a series of dials that work in the same way as the telephone dial of old. Could you dial your way through typing?

All the files to make the board, as well as a build guide, are in the GitHub repository linked above, but they’ve also released a promotional video that we’ve put below the break. The dials use 3D printed parts, and a rotary encoder to detect the key in question. We remember from back in the day how there were speed dialing techniques with dial phones, something we’ve probably by now lost the muscle memory for.

We like this board for its quirkiness, and while it might become a little tedious to type a Hackaday piece on it, there might be some entertainment for old-timers in watching the youngsters figuring it out. If you’re hungry for more, we’ve covered them before.

Continue reading “Google Japan Turn Out Another Keyboard, And It’s A Dial”

An FPGA-Based Mechanical Keyboard

You can buy all kinds of keyboards these days, from basic big-brand stuff to obscure mechanical delicacies from small-time builders. Or, you can go the maker route, and build your own. That’s precisely what [Lambert Sartory] did with their Clavier build.

This build goes a bit of a different route to many other DIY keyboards out there, in that [Lambert] was keen to build it around an FPGA instead of an off-the-shelf microcontroller. To that end, the entire USB HID stack was implemented in VHDL on a Lattice ECP5 chip. It was a heavy-duty way to go, but it makes the keyboard quite unique compared to those that just rely on existing HID libraries to do the job. This onboard hardware also allowed [Lambert] to include JTAG, SPI, I2C, and UART interfaces right on the keyboard, as well as a USB hub for good measure.

As for the mechanical design, it’s a full-size 105-key ISO keyboard with one bonus key for good measure. That’s the coffee key, which either locks the attached computer when you’re going for a break, or resets the FPGA with a long press just in case it’s necessary. It’s built with Cherry MX compatible switches, has N-key rollover capability, and a mighty 1000 Hz polling rate. If you can exceed that by hand, you’re some sort of superhuman.

The great thing about building your own keyboard is you can put in whatever features you desire. If you’re whipping up your own neat interface devices, don’t hesitate to let us know!

Debugging The Instant Macropad

Last time, I showed you how to throw together a few modules and make a working macropad that could act like a keyboard or a mouse. My prototype was very simple, so there wasn’t much to debug. But what happens if you want to do something more complex? In this installment, I’ll show you how to add the obligatory blinking LED and, just to make it interesting, a custom macro key.

There is a way to print data from the keyboard, through the USB port, and into a program that knows how to listen for it. There are a few choices, but the qmk software can do it if you run it with the console argument.

The Plan

In theory, it is fairly easy to just add the console feature to the keyboard.json file:

{
...
    "features": {
        "mousekey": true,
        "extrakey": true,
        "nkro": false,
        "bootmagic": false,
        "console": true
    },
...

That allows the console to attach, but now you have to print.

Continue reading “Debugging The Instant Macropad”

Instant Macropad: Just Add QMK

I recently picked up one of those cheap macropads (and wrote about it, of course). It is surprisingly handy and quite inexpensive. But I felt bad about buying it. Something like that should be easy to build yourself. People build keyboards all the time now, and with a small number of keys, you don’t even have to scan a matrix. Just use an I/O pin per switch.

The macropad had some wacky software on it that, luckily, people have replaced with open-source alternatives. But if I were going to roll my own, it would be smart to use something like QMK, just like a big keyboard. But that made me wonder, how much trouble it would be to set up QMK for a simple project. Spoiler: It was pretty easy.

The Hardware

Simple badge or prototype macropad? Why not both?

Since I just wanted to experiment, I was tempted to jam some switches in a breadboard along with a Raspberry Pi Pico. But then I remembered the “simple badge” project I had up on a nearby shelf. It is simplicity itself: an RP2040-Plus (you could just use a regular Pi Pico) and a small add-on board with a switch “joystick,” four buttons, and a small display. You don’t really need the Plus for this project since, unlike the badge, it doesn’t need a battery. The USB cable will power the device and carry keyboard (or even mouse) commands back to the computer.

Practical? No. But it would be easy enough to wire up any kind of switches you like. I didn’t use the display, so there would be no reason to wire one up if you were trying to make a useful copy of this project.

Continue reading “Instant Macropad: Just Add QMK”

The Tape Speed Keyboard

For those who experienced any part of the 1960s, even if it’s just experiencing the music from that era here in the future, the sound of the Mellotron is immediately recognizable. The Moody Blues were famous for using the tape-based instrument, and the Beatles and David Bowie produced hits with it as well. It’s haunting sounds are still highly prized today, but the complexity, cost, and maintenance requirement for the tape loops and other moving parts can put many musicians off from owning one. But [Japhy Riddle] has built an instrument without these downsides called the Tape Speed Keyboard.

Unlike the Mellotron which used a tape loop for each of its keys, the Tape Speed Keyboard uses only a single cassette tape. As the name implies, it changes the pitch of the sound by modulating the speed of the single tape housed in its own tape deck. The keyboard itself started off life as a Casio MT-35 but since this is a completely analog instrument, it was rewired so each key is connected to a potentiometer whose output voltage is tuned to a specific tape speed. [Japhy] reports that this is similar to tuning an analog piano and the process can be equally temperamental.

With everything electronic working, [Japhy] turned to making this a more acceptable musical instrument. Predictably, turning the motor on and off for each key press came with a bit of delay, causing the sound to come out goofy and muddy. To solve this problem he changed the design to make the tape play continuously rather than start and stop for a key press, and then modified other keys to be on-off switches for sound output. Since cassette tapes have two sides, he can also play either of two sounds in this way.

With the final polish on, the Tape Speed Keyboard is able to produce completely unique compositions that separate it from even the venerable Mellotron. Be sure to check out the video linked below to hear its sound. There have been plenty of other musical projects based around tape decks as well, including this one inspired by the original Mellotron and this tape deck-based guitar effects pedal.

Thanks to [splashbun] for the tip!

Continue reading “The Tape Speed Keyboard”

Phone Keyboard Reverse Engineered

Who knows what you’ll find in a second-hand shop? [Zeal] found some old keyboards made to fit early Alcatel phones from the year 2000 or so. They looked good but, of course, had no documentation. He’s made two videos about his adventure, and you can see them below.

The connector was a cellphone-style phone jack that must carry power and some sort of serial data. Inside, there wasn’t much other than a major chip and a membrane keyboard. There were a few small support chips and components, too.

Continue reading “Phone Keyboard Reverse Engineered”

Add TouchTone Typing To Your Next Project

The Blackberry made phones with real keyboards popular, and smartphones with touch keyboards made that input method the default. However, the old flip phone crowd had just a few telephone keys to work with. If you have a key-limited project, maybe check out the libt9 library from [FoxMoss].

There were two methods for using these limited keyboards, both of which relied on the letters above a phone key’s number. For example, the number 2 should have “ABC” above it, or, sometimes, below it.

In one scheme, you’d press the two key multiple times quickly to get the letter you wanted. One press was ‘2’ while two rapid presses made up ‘A.’ If you waited too long, you were entering the next letter (so pressing two, pausing, and pressing it again would give you ’22’ instead of ‘A’).

Continue reading “Add TouchTone Typing To Your Next Project”