- [18 Sep 2025] macOSWorld accepted to NeurIPS 2025
- [15 Sep 2025] Optimised the automated benchmark execution experience; Added a GUI display for real-time benchmark progress and results
- Faster: Compared to the official one, this implementation reduces snapshot recovery time for each task from 10-15 minutes to less than 1 minute, significantly decreasing time overhead
- Cheaper: Locally deployed macOS environment, saving the cost of AWS dedicated host tenancy
- Minimum hardware requirments:
- Ubuntu machines with Intel/AMD CPUs supporting AVX2 (Check CPU AVX2 support)
- 32 GB of RAM
- 400 GB of free disk space
- This implementation cannot cover benchmarking for iMovie-related tasks. Referring to Table 3 (main results) in the macOSWorld paper, it can support reporting the following metrics:
Category | Supported |
---|---|
System & Interface | ✔️ |
System Apps | ✔️ |
File Management | ✔️ |
Productivity | ✔️ |
Media | ✔️ |
Advanced Apps* | ⭕ |
Multi-Apps | ✔️ |
Overall | ✔️ |
*This VMware implementation excludes iMovie tasks. |
- Interactive macOS environment: 30 macOS-native apps with their exclusive user interfaces
- Multilingual benchmarking: Tasks and environments available in English, Chinese, Arabic, Japanese and Russian
- Safety evaluation: Dedicated subset for benchmarking agents' resilience under context deception attacks
This implementation consists of a Python testbench script and a VMware-based macOS environment. Both run locally, despite the testbench may require access to online APIs. The benchmark process involves four main steps:
- Step 1: Local Environment Configuration -- General
- Step 2: Local Environment Configuration -- VMware
- Step 3: Running the Benchmark
- Step 4: Releasing VMware Resources
conda create -n macosworld python=3.9.21
conda activate macosworld
pip install vncdotool==1.2.0 boto3==1.36.20 sshtunnel httpx[socks] openai anthropic google-auth google_cloud_aiplatform jupyter
For GPT-4o with SoM Annotations:
- Install additional dependencies:
conda activate macosworld
pip install timm easyocr paddlepaddle paddleocr einops==0.8.0 supervision==0.18.0 ultralytics==8.3.70
- Download model weights:
mkdir OmniParser
cd OmniParser
git clone https://huggingface.co/microsoft/OmniParser-v2.0
mv OmniParser-v2.0 weights
mv weights/icon_caption weights/icon_caption_florence
For Gemini Models:
macOSWorld uses the VertexAI API. Follow this guide to set up credentials and obtain a JSON credential file. Set the environment variable:
export GOOGLE_APPLICATION_CREDENTIALS='/path/to/gen-lang-client-xxx.json'
For ShowUI:
conda activate macosworld
pip install torch==2.6.0 qwen-vl-utils transformers==4.47.0 accelerate==0.26.0
For UI-TARS:
- Install dependencies:
conda create -n uitars python=3.9.21
pip install -U transformers==4.49.0
pip install vllm==0.6.6 --extra-index-url https://download.pytorch.org/whl/cu124
- Start the vLLM service on the same device running the testbench:
NCCL_P2P_DISABLE=1 CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve "bytedance-research/UI-TARS-7B-DPO" --served-model-name UI-TARS-7B-DPO --limit-mm-per-prompt image=3 -tp 4
Note: The
tp
parameter specifies the number of GPUs to use and must be a common divisor of 28 and 16.
Please follow the instructions here to set up the VMware environment.
Configure your environment variables and run the testbench. Replace the 🧩 placeholders with your actual values:
# API Keys (configure as needed)
export OPENAI_API_KEY=🧩'sk-proj-...' # For OpenAI models
export ANTHROPIC_API_KEY=🧩'sk-ant-...' # For Anthropic models
export GOOGLE_APPLICATION_CREDENTIALS=🧩'/path/to/gen-lang-client-xxx.json' # For Gemini models
# Set credential permission
chmod 400 credential.pem
# Run the benchmark
python run.py \
--vmx_path 🧩/path/to/macOSWorld.vmx \
--ssh_pkey credential.pem \
--gui_agent_name 🧩gpt-4o-2024-08-06 \
--paths_to_eval_tasks 🧩./tasks/sys_apps ./tasks/sys_and_interface ./tasks/productivity ./tasks/media ./tasks/file_management ./tasks/multi_apps \
--languages 🧩task_en_env_en task_zh_env_zh task_ar_env_ar task_ja_env_ja task_ru_env_ru \
--base_save_dir ./results/gpt_4o \
--max-steps 15 \
--snapshot_recovery_timeout_seconds 120 \
--task_step_timeout 120
Parameter | Description |
---|---|
instance_id |
EC2 instance ID |
vmx_path |
Path to the VM configuration file |
ssh_pkey |
Local file path to the provided credential.pem file |
gui_agent_name |
GUI agent identifier (see supported models below) |
paths_to_eval_tasks |
Directory paths containing evaluation task JSON files |
languages |
Language pairs in format task_<lang>_env_<lang> |
base_save_dir |
Local directory for storing evaluation results |
max_steps |
Maximum dialogue turns per task |
snapshot_recovery_timeout_seconds |
Timeout for snapshot recovery (usually doesn't need adjustment) |
Supported GUI Agents
-
OpenAI GPT Series:
gpt-4o
,gpt-4o-2024-08-06
- With SoM:
gpt-4o/omniparser
,gpt-4o-2024-08-06/omniparser
- Computer Use:
openai/computer-use-preview
-
Google Gemini Series:
gemini-1.5-pro-002
,gemini-2.5-pro-preview-03-25
-
Anthropic Claude:
claude-3-7-sonnet-20250219/computer-use-2025-01-24
-
Open Source Models:
UI-TARS-7B-DPO
showlab/ShowUI-2B
Supported Language Codes: English (en
), Chinese (zh
), Arabic (ar
), Japanese (ja
), Russian (ru
)
The Safety Subset: Run it separately, because the safety subset is only provided in English.
python run.py \
--vmx_path 🧩/path/to/macOSWorld.vmx \
--ssh_pkey credential.pem \
--gui_agent_name 🧩gpt-4o-2024-08-06 \
--paths_to_eval_tasks 🧩./tasks/sys_apps ./tasks/safety \
--languages 🧩task_en_env_en \
--base_save_dir ./results/gpt_4o \
--max-steps 15 \
--snapshot_recovery_timeout_seconds 120 \
--task_step_timeout 120
For debugging purposes, you can run only the testbench:
python testbench.py \
--vmx_path 🧩/path/to/macOSWorld.vmx \
--ssh_pkey credential.pem \
--gui_agent_name 🧩gpt-4o-2024-08-06 \
--paths_to_eval_tasks 🧩./tasks/sys_apps ./tasks/sys_and_interface ./tasks/productivity ./tasks/media ./tasks/file_management ./tasks/multi_apps \
--languages 🧩task_en_env_en task_zh_env_zh task_ar_env_ar task_ja_env_ja task_ru_env_ru \
--base_save_dir ./results/gpt_4o \
--max-steps 15 \
--snapshot_recovery_timeout_seconds 120 \
--task_step_timeout 120
When the testbench is interrupted, to continue, the base_save_dir
needs to be cleaned up first. Although the cleanup functionality is already integrated into run.py
, you can still perform this cleanup manually.
python cleanup.py --base_save_dir /path/to/base_save_dir
Clean up the base_save_dir
before rerunning the testbench. Previously completed tasks will not be deleted or re-executed.
Use the provided Jupyter notebook to view benchmark progress and results. This notebook provides a GUI that displays benchmark progress and results through a hierarchical menu.
scripts/display_progress.ipynb
After completing the benchmark, shut down the virtual machine in VMware Workstation. Alternatively, run:
vmrun -T ws stop "/path/to/macOSWorld.vmx" hard
To benchmark other agents, follow these two steps:
- Create
agent/your_custom_agent.py
— either modify based on an existing agent or start withagent/template_for_custom_agent.py
. - Register your agent in
agent/get_gui_agent.py
.
VMware environments built upon https://www.youtube.com/watch?v=akgl2urRIyk and https://www.youtube.com/watch?v=PZXS3AztbmQ.
The authors thank Kevin Qinghong Lin, Zhiqiang Chen, Noorbakht Khan, Brandon Ng, Mingyu Ouyang, Siyuan Hu, Xiangwu Guo, Henry Hengyuan Zhao, Difei Gao, Christopher Rawles, and Kun Shao for their valuable discussions and feedback.
@article{macosworld,
title={macOSWorld: A Multilingual Interactive Benchmark for GUI Agents},
author={Pei Yang and Hai Ci and Mike Zheng Shou},
year={2025},
eprint={2506.04135},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2506.04135},
}