Skip to content

Update all translated document pages #1232

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 24 additions & 23 deletions docs/ja/agents.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,22 +4,23 @@ search:
---
# エージェント

エージェントはアプリケーションの主要な構成要素です。エージェントとは、instructions と tools で構成された大規模言語モデル (LLM) です。
エージェントは、アプリの中核となるビルディングブロックです。エージェントは、 instructions とツールで構成された大規模言語モデル LLM です。

## 基本設定

エージェントでよく設定するプロパティは次のとおりです
エージェントで最も一般的に設定するプロパティは次のとおりです

- `name`: エージェントを識別する必須の文字列です。
- `instructions`: developer メッセージまたは system prompt とも呼ばれます
- `model`: 使用する LLM を指定します。任意の `model_settings` で temperature、top_p などのモデル調整パラメーターを設定できます。
- `tools`: エージェントがタスクを達成するために使用できる tools です。
- `name`: エージェントを識別する必須の文字列
- `instructions`: developer メッセージ、または system prompt とも呼ばれます
- `model`: 使用する LLM と、temperature や top_p などのモデルチューニングパラメーターを指定するオプションの `model_settings`
- `tools`: エージェントがタスク達成のために使用できるツール

```python
from agents import Agent, ModelSettings, function_tool

@function_tool
def get_weather(city: str) -> str:
"""returns weather info for the specified city."""
return f"The weather in {city} is sunny"

agent = Agent(
Expand All @@ -32,7 +33,7 @@ agent = Agent(

## コンテキスト

エージェントは汎用的に `context` 型を取り込みます。コンテキストは dependency-injection (依存性注入) 用のオブジェクトで、あなたが作成して `Runner.run()` に渡すことで、すべてのエージェント、tool、ハンドオフなどに共有されます。実行中の依存関係や状態をまとめて保持する入れ物として機能し、任意の Python オブジェクトを渡せます
エージェントは `context` 型に対してジェネリックです。 context は依存性インジェクション用のツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。このオブジェクトはすべてのエージェント、ツール、ハンドオフなどに渡され、エージェント実行時の依存関係と状態の入れ物として機能します。 context には任意の Python オブジェクトを指定できます

```python
@dataclass
Expand All @@ -50,7 +51,7 @@ agent = Agent[UserContext](

## 出力タイプ

デフォルトでは、エージェントはプレーンテキスト (つまり `str`) を出力します。特定の型で出力させたい場合は、`output_type` パラメーターを使用してください。よく使われる選択肢として [Pydantic](https://docs.pydantic.dev/) オブジェクトがありますが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる型であれば、dataclass、list、TypedDict など何でも対応しています
デフォルトでは、エージェントはプレーンテキスト (つまり `str`) を出力します。特定の型の出力をエージェントに生成させたい場合は、 `output_type` パラメーターを使用します。一般的な選択肢は [Pydantic](https://docs.pydantic.dev/) オブジェクトですが、 Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる型 (dataclass、list、TypedDict など) であればサポートされます

```python
from pydantic import BaseModel
Expand All @@ -71,11 +72,11 @@ agent = Agent(

!!! note

`output_type` を渡すと、モデルは通常のプレーンテキスト応答ではなく[structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するようになります
`output_type` を渡すと、モデルは通常のプレーンテキスト応答ではなく [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するよう指示されます

## ハンドオフ

ハンドオフは、エージェントが委任できるサブエージェントです。ハンドオフのリストを渡すと、エージェントは必要に応じてそれらに委任できます。これは、単一タスクに特化したモジュール化されたエージェントをオーケストレーションする強力なパターンです。詳しくは [ハンドオフ](handoffs.md) のドキュメントをご覧ください。
ハンドオフは、エージェントが委任できるサブエージェントです。ハンドオフのリストを渡すことで、エージェントは関連がある場合にそれらへ委任を選択できます。これは、単一タスクに特化したモジュール化されたエージェントをオーケストレーションできる強力なパターンです。詳しくは [ハンドオフ](handoffs.md) のドキュメントをご覧ください。

```python
from agents import Agent
Expand All @@ -96,7 +97,7 @@ triage_agent = Agent(

## 動的 instructions

多くの場合、エージェント作成時に instructions を渡せますが、関数を介して動的に instructions を生成することも可能です。その関数は agent と context を受け取り、プロンプトを返さなければなりません。同期関数と `async` 関数のどちらも利用できます
多くの場合、エージェント作成時に instructions を指定できますが、関数を介して動的に instructions を提供することも可能です。この関数はエージェントと context を受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数の両方を受け付けます

```python
def dynamic_instructions(
Expand All @@ -111,17 +112,17 @@ agent = Agent[UserContext](
)
```

## ライフサイクルイベント (hooks)
## ライフサイクル イベント (hooks)

エージェントのライフサイクルを監視したい場合があります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりできます。`hooks` プロパティを使ってエージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスを継承し、関心のあるメソッドをオーバーライドしてください。
エージェントのライフサイクルを観察したい場合があります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりできます。 `hooks` プロパティを使ってエージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスをサブクラス化し、関心のあるメソッドをオーバーライドしてください。

## ガードレール

ガードレールを利用すると、エージェントの実行と並行してユーザー入力のチェックやバリデーションを行えます。たとえば、ユーザー入力の関連性をスクリーニングできます。詳細は [ガードレール](guardrails.md) のドキュメントをご覧ください。
ガードレールを使用すると、エージェントの実行と並行してユーザー入力に対するチェックやバリデーションを行えます。たとえば、ユーザー入力の関連性をチェックすることが可能です。詳しくは [ガードレール](guardrails.md) のドキュメントをご覧ください。

## エージェントのクローンコピー
## エージェントのクローン / コピー

エージェントの `clone()` メソッドを使うと、既存のエージェントを複製し、必要に応じて任意のプロパティを変更できます
エージェントの `clone()` メソッドを使用すると、エージェントを複製し、任意のプロパティを変更できます

```python
pirate_agent = Agent(
Expand All @@ -138,15 +139,15 @@ robot_agent = pirate_agent.clone(

## ツール使用の強制

tools のリストを渡しても、LLM が必ずしもツールを使用するとは限りません。[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することで、ツール使用を強制できます。有効な値は次のとおりです。
ツールのリストを渡しても、 LLM が必ずツールを使用するとは限りません。[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することでツール使用を強制できます。有効な値は次のとおりです。

1. `auto`LLM がツールを使うかどうかを判断します
2. `required`LLM にツール使用を必須とします (ただしどのツールを使うかは賢く選択します)。
3. `none`LLM にツールを使用しないことを必須とします
4. 具体的な文字列 (例: `my_tool`) を設定すると、LLM はそのツールを必ず使用します。
1. `auto` : LLM がツールを使用するかどうかを判断します
2. `required` : LLM にツール使用を必須にします (どのツールを使うかはインテリジェントに選択)。
3. `none` : LLM にツールを使用しないことを要求します
4. 具体的な文字列 (例: `my_tool`) を指定すると、その特定のツールを LLM に使用させます。

!!! note

無限ループを防ぐため、フレームワークはツール呼び出し後に自動で `tool_choice` "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定可能です。ツールの実行結果が再び LLM に送られ、`tool_choice` の設定により新たなツール呼び出しが発生し続けるのが無限ループの原因です
無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この動作は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定可能です。無限ループの原因は、ツールの結果が LLM に送信され、その結果 `tool_choice` により再度ツール呼び出しが生成される、という循環にあります

ツール呼び出し後に自動モードで継続せず完全に停止したい場合は、[`Agent.tool_use_behavior="stop_on_first_tool"`] を設定してください。ツールの出力をそのまま最終応答として使用し、追加の LLM 処理を行いません。
ツール呼び出し後に (auto モードで続行せず) エージェントを完全に停止させたい場合は、[`Agent.tool_use_behavior="stop_on_first_tool"`] を設定してください。これにより、ツールの出力をそのまま最終応答として使用し、追加の LLM 処理を行いません。
24 changes: 12 additions & 12 deletions docs/ja/config.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,15 +6,15 @@ search:

## API キーとクライアント

デフォルトでは、 SDK は import された時点で、 LLM リクエストとトレーシング用に `OPENAI_API_KEY` 環境変数を探します。アプリを起動する前にその環境変数を設定できない場合は、[`set_default_openai_key()`][agents.set_default_openai_key] 関数を使ってキーを設定できます
既定では、 SDK はインポート時に LLM リクエストおよびトレーシング用の `OPENAI_API_KEY` 環境変数を参照します。アプリ起動前にこの環境変数を設定できない場合は、 [set_default_openai_key()][agents.set_default_openai_key] 関数を使用してキーを設定できます

```python
from agents import set_default_openai_key

set_default_openai_key("sk-...")
```

別の方法として、使用する OpenAI クライアントを設定することもできます。デフォルトでは、 SDK は環境変数または上記で設定したデフォルトキーを用いて `AsyncOpenAI` インスタンスを生成します。これを変更したい場合は、[`set_default_openai_client()`][agents.set_default_openai_client] 関数を使用してください
別の方法として、使用する OpenAI クライアントを構成することもできます。既定では、 SDK `AsyncOpenAI` インスタンスを作成し、前述の環境変数またはデフォルトキーを使用します。 [set_default_openai_client()][agents.set_default_openai_client] 関数を使ってこれを変更できます

```python
from openai import AsyncOpenAI
Expand All @@ -24,7 +24,7 @@ custom_client = AsyncOpenAI(base_url="...", api_key="...")
set_default_openai_client(custom_client)
```

最後に、使用する OpenAI API をカスタマイズすることも可能です。デフォルトでは、 OpenAI Responses API を使用します。これを Chat Completions API に変更したい場合は、[`set_default_openai_api()`][agents.set_default_openai_api] 関数をご利用ください
さらに、使用する OpenAI API をカスタマイズすることも可能です。既定では OpenAI Responses API が使用されます。 [set_default_openai_api()][agents.set_default_openai_api] 関数を使用することで、 Chat Completions API へ切り替えられます

```python
from agents import set_default_openai_api
Expand All @@ -34,15 +34,15 @@ set_default_openai_api("chat_completions")

## トレーシング

トレーシングはデフォルトで有効になっています。デフォルトでは、上記のセクションで設定した OpenAI API キー(環境変数またはデフォルトキー)を使用します。トレーシングで使用する API キーを個別に設定したい場合は、[`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用できます
トレーシングは既定で有効になっています。上記で説明した OpenAI API キー (環境変数または設定したデフォルトキー) が使用されます。トレーシングに使用する API キーを個別に設定したい場合は、 [`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を利用してください

```python
from agents import set_tracing_export_api_key

set_tracing_export_api_key("sk-...")
```

さらに、[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使うことで、トレーシングを完全に無効化できます
トレーシングを完全に無効化したい場合は、 [`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使用します

```python
from agents import set_tracing_disabled
Expand All @@ -52,17 +52,17 @@ set_tracing_disabled(True)

## デバッグログ

SDK には、ハンドラーが設定されていない Python ロガーが 2 つあります。デフォルトでは、警告とエラーのみが `stdout` に出力され、それ以外のログは抑制されます。
SDK にはハンドラーが設定されていない Python ロガーが 2 つあります。既定では、警告とエラーは `stdout` に出力されますが、それ以外のログは抑制されます。

詳細なログを有効にするには、[`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用してください。
詳細なログを有効にするには、 [`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用してください。

```python
from agents import enable_verbose_stdout_logging

enable_verbose_stdout_logging()
```

ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズすることもできます。詳細は [Python logging guide](https://docs.python.org/3/howto/logging.html) をご覧ください
また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズすることも可能です。詳細は [Python logging ガイド](https://docs.python.org/3/howto/logging.html) を参照してください

```python
import logging
Expand All @@ -81,17 +81,17 @@ logger.setLevel(logging.WARNING)
logger.addHandler(logging.StreamHandler())
```

### ログに含まれる機微なデータ
### ログ内の機微データ

一部のログには機微なデータ(例: ユーザー データ)が含まれる場合があります。これらのデータの記録を無効化したい場合は、以下の環境変数を設定してください
一部のログには (ユーザーデータなどの) 機微データが含まれる場合があります。これらのデータをログに出力したくない場合は、次の環境変数を設定してください

LLM の入力および出力のロギングを無効にするには:
LLM の入力および出力のログを無効化する:

```bash
export OPENAI_AGENTS_DONT_LOG_MODEL_DATA=1
```

ツールの入力および出力のロギングを無効にするには:
ツールの入力および出力のログを無効化する:

```bash
export OPENAI_AGENTS_DONT_LOG_TOOL_DATA=1
Expand Down
Loading