Autonomous vessels driven by renewable energy are increasingly envisioned as vital for sustainable ocean?operations such as environmental monitoring, offshore power generation, and long-haul unmanned surface vehicles. Implementing fine-scale control of these systems has proven challenging however,?due to time-varying sea-state dynamics, sporadic energy inputs, the possibility of failure at the component level, and the requirement for coordination between multiple agents. In the article, an end-to-end deep reinforcement learning-based hierarchical control solution with real-time navigation and?its synthesis for energy optimization is proposed. It combines high-level energy regulation with low-level actuator scheduling so as to react to the variations of?the environment and internal perturbations. Simulations using actual wave realizations, sensor failures, actuator outages, and network communication variation were used?to demonstrate the performance of the control system in the following 5 performance aspects: energy saving, navigation accuracy, communication reliability, fault tolerant and multi-agent coordination. Results indicate that the architecture sustained over 80% of the performance and achieved energy efficiencies up to 54.5% in the?best case under failure scenarios. Performance-measures demonstrated reasonable scalability?up to 5–7 agents without significant communication overhead. The findings support the applicability of deep reinforcement learning for real-time maritime control under uncertainty, offering a viable alternative to conventional rule-based or predictive control strategies. The framework’s modular design allows for future integration with federated learning, hybrid control models, or autonomous deployment. The article contributes to the growing field of intelligent marine systems by providing a robust and adaptable control strategy for sustainable and scalable operations in autonomous maritime environments.