Corrosion is an issue that has a significant impact on the oil and gas industry, resulting in significant losses. This is worth investigating because corrosion contributes to a large part of the total annual costs of oil and gas production companies worldwide, and can cause serious problems for the environment that will impact society. The use of inhibitors is one way to prevent corrosion that is quite effective. This study is an experimental study that aims to implement machine learning (ML) on the efficiency of corrosion inhibitors. In this study, the use of the Quantum Support Vector Regression (QSVR) algorithm in the ML approach is used considering the increasingly developing quantum computing technology with the aim of producing better evaluation matrix values than the classical ML algorithm. From the experiments carried out, it was found that the QSVR algorithm with a combination of (TrainableFidelityQuantumKernel, ZZFeatureMap/ PauliFeatureMap, and linear entanglement) obtained better Root Mean Square Error (RMSE) and model training time with a value of 6,19 and 92 compared to other models in this experiment which can be considered in predicting the efficiency of corrosion inhibitors. The success of the research model can provide a new insights of the ability of quantum computer algorithms to increase the evaluation value of the matrix and the ability of ML to predict the efficiency of corrosion inhibitors, especially on a large industrial scale.