The steps of this research lead to the design of a system that can help classify the condition of fresh or rotten apples by utilizing Convolutional Neural Network (CNN)-based image analysis, specifically by applying the You Only Look Once (YOLO) algorithm. YOLO was chosen because of its ability to be useful in fast and accurate object detection in real-time, making it effective for fruit quality recognition. The CNN model will be trained using a data set of apple images with various conditions, such as differences in color, texture, and level of damage, so that the system is able to distinguish fresh and rotten apples optimally. It is hoped that the results of this research will be useful in producing a web-based system that can automatically detect and classify apple quality. With this system, the apple quality inspection process becomes faster, more efficient, and reduces dependence on manual inspections, while helping to increase accuracy in the apple sorting process to determine whether the apples are rotten or fresh.KLASIFIKASI APEL SEGAR DAN BUSUK BERBASIS ANALISIS CITRA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)Pada langkah tahapan penelitian ini menuju pada perancangan sebuah sistem yang dapat membantu klasifikasi kondisi buah apel segar atau busuk dengan memanfaatkan analisis citra berbasis Convolutional Neural Network (CNN), khususnya dengan menerapkan algoritma You Only Look Once (YOLO). YOLO dipilih karena kemampuannya berguna dalam deteksi objek secara cepat dan akurat secara real-time, sehingga efektif untuk pengenalan kualitas buah. Model CNN akan dilatih menggunakan kumpulan data citra apel dengan berbagai variasi kondisi, seperti perbedaan warna, tekstur, serta tingkat kerusakan, agar sistem mampu membedakan apel segar dan busuk secara optimal. Diharapkan, hasil dari penelitian ini berguna menghasilkan suatu sistem berbasis web yang dapat melakukan proses deteksi dan klasifikasi kualitas apel secara otomatis. Dengan adanya sistem ini, proses pemeriksaan kualitas apel menjadi lebih cepat, efisien, serta mengurangi ketergantungan terhadap inspeksi manual, sekaligus membantu meningkatkan akurasi dalam proses sortir buah apel lebih cepat mengetahui busuk atau segar.