Claim Missing Document
Check
Articles

Found 6 Documents
Search

Tribology Properties on 5W-30 Synthetic Oil with Surfactant and Nanomaterial Oxide Addition Puspitasari, Poppy; Permanasari, Avita Ayu; Warestu, Ayu; Arifiansyah, Gilang Putra Pratama; Pramono, Diki Dwi; Pasang, Timotius
Automotive Experiences Vol 6 No 3 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10115

Abstract

This study analyzes the tribological properties of 5W-30 synthetic oil with the addition of surfactants and oxide nanomaterials. This research used SAE 5W-30 lubricant base material with the addition of Aluminum Oxide (Al2O3), Titanium Dioxide (TiO2), and Hybrid Aluminum Oxide (Al2O3) - Titanium Dioxide (TiO2) nanomaterials. The nano lubricants were synthesized using a two-step method by adding nanomaterials by 0.05% volume fraction, followed by 50 ml of 5W-30 synthetic oil and polyvinylpyrrolidone (PVP) surfactant by 0.1%. Then, it was stirred using a magnetic stirrer for 20 minutes, followed by an ultrasonic homogenizer process for 30 minutes. Further, the nanolubricant was tested to identify its thermophysical properties, including density, dynamic viscosity, and sedimentation. It also underwent tribological testing, including wear, coefficient of friction, and surface roughness. Further, the nanomaterial was characterized using SEM, XRD, and FTIR. The morphological analysis using SEM suggested an irregular shape of the Al2O3 nanomaterial surface, while TiO2 has a spherical shape. Besides, phase identification with XRD testing showed corundum and anatase phases. Functional group analysis through the FTIR showedthe presence of Ti-O and Al-O. The highest density and viscosity results without surfactants were obtained in hybrid nanolubricant 779 kg/mm3 and 0.0579 Pa.s, while the use of surfactants resulted in 788.89 kg/mm3 of density and 0.0695 Pa.sviscosity. Tribological gray cast iron FC25 results in the best COF value observed in SAE 5W-30 + PVP-TiO2 lubrication (0.093). The lowest wear mass without surfactant was obtained in the Al2O3-TiO2 nanolubricant hybrid (0.02 grams), the lowest surface roughness in a mixture of PVP and TiO2 surfactants was 0.743 μm. Meanwhile, the surface morphology of gray cast iron FC25 with hybrid nanolubricant SAE 5W-30 (Al2O3-TiO2) and Nanolubricant SAE 5W-30+ (PVP-TiO2) produced the smoothest surface.
Influence of additive nano calcium carbonate (CaCO3) on SAE 10W-30 engine oil: A study on thermophysical, rheological and performance Kurniawan, Dany Ardymas; Puspitasari, Poppy; Fikri, Ahmad Atif; Permanasari, Avita Ayu; Razak, Jeefferie Abd.; Pramono, Diki Dwi
Mechanical Engineering for Society and Industry Vol 4 No 1 (2024)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.11724

Abstract

Researchers have used nanomaterials as additives in base oil to improve its specifications, especially to minimize wear and friction during its applications. In this study, calcium carbonate (CaCO3) nanoparticles were selected as an additive to serve as a protective layer between components and anti-wear properties. In this study, calcium carbonate (CaCO3) nanoparticles were selected as an additive to serve as a protective layer between components and anti-wear properties. Nano lubricant samples were prepared using mass variations of CaCO3 and SAE 10W-30 base oil with concentrations of 0.05, 0.1, 0.15, and 0.2%, then homogenized. The nanolubricant samples obtained were analyzed for thermophysical, rheological properties and lubricant performance with the addition of nano CaCO3 in improving the wear resistance of FC25 cast iron. The results of thermophysical and rheological properties analysis suggest that the nanolubricant has better tribological properties compared to base lubricants. The highest values of thermal conductivity, density, and viscosity (40 oC) are 0.139 W/m.K, 812.203 kg/m3, and 106 mPa.s (40 oC). Meanwhile, the highest CoF, disc mass loss, and surface roughness of nanolubricant are 0.0706, 0.0037 grams, and 0.50 µm, respectively. These results indicate that the greatest wear-reducing agent is from the nanolubricant with the addition of CaCO3 nanopowder additives at 0.1 wt% concentration. These results are expected to give significant insights into the advancement of nano technology-based lubricants in the future.
Characterization of Hydroxyapatite Derived from Scallop Shell Waste Synthesized by Sonochemical Method with Different Temperature Calcination Pramono, Diki Dwi; Puspitasari, Poppy; Aminnudin, Aminnudin; Razak, Jeefferie Abd
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 8, No 2 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v8i22024p400

Abstract

One common bio-ceramic material used in the biomedical industry is hydroxyapatite. Because of its crystallographic and molecular resemblance to the hard tissues of the human body, hydroxyapatite is thought to form. Scallop shells are one natural source of hydroxyapatite, which is high in calcium. This study examines how the calcination temperature affects the characteristics of hydroxyapatite made from leftover scallop shell. Hydroxyapatite was synthesized via the sonochemical method, with calcination conducted at temperatures of 900°C, 1000°C, and 1100°C. The hydroxyapatite that was prepared was assessed using X-ray diffraction (XRD) to determine the phase and crystallite size, Scanning Electron Microscopy (SEM) to conduct a morphological investigation, and Fourier Transform Infrared (FTIR) spectroscopy to conduct a functional group analysis. Phases resulting from varying calcination temperatures include hydroxyapatite and β-tricalcium phosphate. The crystallite size of hydroxyapatite enhanced with rising temperature. The morphology of hydroxyapatite exhibited agglomeration in all samples, with grain size escalating alongside the increase in calcination temperature. The functional groups generated under the three temperature fluctuations include O-H, P-O, PO43-, and O–P–O groups. The calcination temperature significantly influences the characteristics of produced hydroxyapatite and impacts its biocompatibility as a bone implant material.
Influence of Different Nanoparticles on Thermophysical Properties and Wear Resistance of Corn Oil-Based Cutting Fluid in MQL-CNC Milling Machining Habiby, M. Nuril Anwar; Puspitasari, Poppy; Aminnudin, Aminnudin; Pramono, Diki Dwi; Fikri, Ahmad Atif; Ghazali, Mariyam Jameelah
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 9, No 1 (2025)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v9i12025p075

Abstract

Vegetable oil-based cutting fluids have emerged as a promising innovation in machining operations, supporting the advancement of sustainable and eco-friendly manufacturing practices. This study delves into the development of a biolubricant derived from corn oil, enriched with 0.15% mass fractions of various nanoparticles, including calcium carbonate (CaCO3), copper oxide (CuO), and multi-walled carbon nanotubes (MWCNT). These nano-cutting fluids were applied through the Minimum Quantity Lubrication (MQL) method during CNC milling of AISI 1045 steel. The investigation focused on evaluating thermophysical properties, including density, thermal conductivity, and dynamic viscosity, as well as tool wear performance. The results demonstrated that CuO nanoparticles yielded the highest density, while MWCNT exhibited superior thermal conductivity and viscosity. Among all samples, the fluid with MWCNT showed the most effective performance in minimizing tool wear. This study highlights the potential of nanoparticle-enriched vegetable-based cutting fluids as high-performance, environmentally responsible alternatives to conventional mineral oil-based lubricants, promoting greener machining in the manufacturing industry.
Application of response surface methodology (RSM) and central composite design (CCD) to optimize of green ammonia production using magnetic induction method (MIM) and nanocatalysts Puspitasari, Poppy; Mufti, Nandang; Fikri, Ahmad Atif; Wahyudi, Deny Yudo; Shaharun, Maizatul Shima binti; Rahmah, Anisa Ur; Pramono, Diki Dwi
Mechanical Engineering for Society and Industry Vol 5 No 2 (2025): Issue in Progress (July-December)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.13408

Abstract

Ammonia synthesis in conventional industrial plants typically employs fused iron-based catalysts under harsh conditions—temperatures of 400–700°C and pressures exceeding 300 atm—resulting in significant energy consumption. This study investigates the potential of using a Mn0.8Zn0.2Fe2O4 catalyst, synthesized under varying sintering temperatures and magnetic field inductions, to enable ammonia synthesis under milder conditions. Additionally, process optimization was carried out using Response Surface Methodology (RSM) and Central Composite Design (CCD). Catalyst characterization results indicate that the crystallite size of Mn0.8Zn0.2Fe2O4 increases with higher sintering temperatures. The catalyst exhibits a near-spherical morphology with notable agglomeration. Magnetic property analysis shows that samples sintered at 700°C and 900°C display ferrimagnetic behavior, while the sample sintered at 1100°C exhibits ferromagnetic characteristics. Temperature-Programmed Reduction (TPR) revealed a maximum reduction peak at 788°C for the catalyst sintered at 1100°C, indicating enhanced reducibility. Ammonia formation was successfully achieved using a Helmholtz coil-assisted synthesis method, where the produced ammonia was captured in acidic and basic media in the form of NH₄OH and (NH₄)₂SO₄, confirming the catalytic activity of Mn0.8Zn0.2Fe2O4. The RSM model demonstrated high accuracy with an R² value of 99.73%, and residual analysis confirmed normal distribution, validating model assumptions. The optimal synthesis parameters determined were a sintering temperature of 700°C, magnetic induction of 0.14 T, and a reaction temperature of 28°C. The minimal deviation between predicted and experimental responses confirms the reliability and predictive accuracy of the quadratic regression model.
Multi-Objective Optimization of Structural Design for Lightweight Vehicle Chassis Maheswara, Dharma; Puspitasari, Poppy; Pramono, Diki Dwi; Permanasari, Avita Ayu; Sukarni, Sukarni
Automotive Experiences Vol 8 No 2 (2025)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.13567

Abstract

This study presents a systematic optimization of a lightweight vehicle chassis design using Design of Experiments (DoE), Finite Element Analysis (FEA), and Analysis of Variance (ANOVA) to enhance structural performance while balancing mass efficiency and safety factor. Material selection and wall thickness variations were considered to achieve a compromise between minimal mass and a safety factor of at least 1.5. Pareto front analysis, combined with the Taguchi method, identified the optimal solution, Cycle Design 11, which achieved a safety factor of 1.9489, representing an increase of 0.7681 compared to the baseline design. The total mass of 3.5742 kg reflects a 32.13% increase from the baseline. ANOVA results confirmed that both material and wall thickness significantly influence safety factor and mass, providing critical guidance for design decisions. This multi-objective optimization approach demonstrates that integrating FEA with experimental design enables superior chassis designs compared to traditional single-objective methods, offering a practical strategy for developing lightweight, safe, and energy-efficient vehicles.