p-Index From 2020 - 2025
0.408
P-Index
This Author published in this journals
All Journal EXPLORE Explore
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENGENALAN EKSPRESI WAJAH MENGGUNAKAN DEEP CONVOLUTIONAL NEURAL NETWORK Biva Candra Lutfi Adiatma; Ema Utami; Anggit Dwi Hartanto
Jurnal Explore Vol 11, No 2 (2021): JULI
Publisher : Universitas Teknologi Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (800.768 KB) | DOI: 10.35200/explore.v11i2.478

Abstract

Pengenalan ekspresi wajah menjadi salah satu bidang penelitian aktif dalam beberapa tahun terakhir. Pendekatan yang ada saat ini sebagian besar menggunakan metode tradisional seperti SIFT, HOG, LBP, yang diikuti oleh klasifikasi yang dilatih dari data gambar atau video. Sebagian besar mendapatkan hasil yang cukup baik ketika menggunakan data citra yang terkontrol , tetapi tidak bekerja dengan baik pada kumpulan data yang lebih sulit dimana terdapat banyak bagian wajah dengan banyak variasi gambar. Banyak penelitian yang telah mengusulkan kerangka kerja untuk pengenalan ekspresi wajah menggunakan metode deep learning. Meskipun kinerjanya lebih baik, masih banyak ruang untuk perbaikan. Dalam penelitian ini kami mengusulkan pendekatan menggunakan metode deep learning berbasis Deep Convolutional Neural Network (DCNN) dengan variasi parameter yang berbeda. Hasil yang didapatkan setelah 5 kali percobaan training pada dataset FER2013 dengan 4 optimizer berbeda yaitu optimizer Nadam mendapatkan hasil yang sama baiknya dengan Adam dengan akurasi 83%, kemudian diikuti Adamax dengan nilai akurasi 82%, dan optimizer terkahir dengan akurasi 74% adalah SGD. Hasil prediksi terbaik diperoleh ketika menggunakan optimizer Nadam dengan akurasi 83%.
PENGENALAN EKSPRESI WAJAH MENGGUNAKAN DEEP CONVOLUTIONAL NEURAL NETWORK Biva Candra Lutfi Adiatma; Ema Utami; Anggit Dwi Hartanto
Explore Vol 11 No 2 (2021): Juli 2021
Publisher : Universitas Teknologi Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35200/ex.v11i2.61

Abstract

Pengenalan ekspresi wajah menjadi salah satu bidang penelitian aktif dalam beberapa tahun terakhir. Pendekatan yang ada saat ini sebagian besar menggunakan metode tradisional seperti SIFT, HOG, LBP, yang diikuti oleh klasifikasi yang dilatih dari data gambar atau video. Sebagian besar mendapatkan hasil yang cukup baik ketika menggunakan data citra yang terkontrol , tetapi tidak bekerja dengan baik pada kumpulan data yang lebih sulit dimana terdapat banyak bagian wajah dengan banyak variasi gambar. Banyak penelitian yang telah mengusulkan kerangka kerja untuk pengenalan ekspresi wajah menggunakan metode deep learning. Meskipun kinerjanya lebih baik, masih banyak ruang untuk perbaikan. Dalam penelitian ini kami mengusulkan pendekatan menggunakan metode deep learning berbasis Deep Convolutional Neural Network (DCNN) dengan variasi parameter yang berbeda. Hasil yang didapatkan setelah 5 kali percobaan training pada dataset FER2013 dengan 4 optimizer berbeda yaitu optimizer Nadam mendapatkan hasil yang sama baiknya dengan Adam dengan akurasi 83%, kemudian diikuti Adamax dengan nilai akurasi 82%, dan optimizer terkahir dengan akurasi 74% adalah SGD. Hasil prediksi terbaik diperoleh ketika menggunakan optimizer Nadam dengan akurasi 83%.