Dhimas Mahardika
Dept. of Mathematics, Diponegoro University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

OPTIMAL CONTROL MODELLING OF COVID-19 OUTBREAK IN SEMARANG CITY INDONESIA Dhimas Mahardika; R. Heru Tjahjana; Sunarsih Sunarsih
Journal of Fundamental Mathematics and Applications (JFMA) Vol 3, No 2 (2020)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (563.399 KB) | DOI: 10.14710/jfma.v3i2.8546

Abstract

Corona virus infection is lethal and life threatening to human life, for prevention it is necessary to carry out quarantined for a portion of susceptible, exposed, and infected population, this kind of quarantine is intended to reduce the spread of the corona virus. The optimal control that will be carried out in this research is conducting quarantine for a portion of susceptible, exposed, and infected individuals. This control function will be applied to the dynamic modelling of Covid-19 spread using Pontryagin Minimum Principle. We will describe the formulation of dynamic system of Covid-19 spread with optimal control, then we use Pontryagin Minimum Principle to find optimal solution of the control. The optimal control will aim to minimize the number of infected population and control measures. Numerical experiments will be performed to illustrate and compare the graph of Covid-19 spread model with and without control.