Claim Missing Document
Check
Articles

Found 4 Documents
Search

Kinetika dan Mekanisme Pelindian Limonit : Pengaruh Waktu dan Temperatur Febriana, Eni; Tristiyan, Agung; Mayangsari, Wahyu; Prasetyo, Agus Budi
Metalurgi Vol 33, No 2 (2018): Metalurgi Vol. 33 No. 2 Agustus 2018
Publisher : Pusat Penelitian Metalurgi dan Material - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (778.765 KB) | DOI: 10.14203/metalurgi.v33i2.420

Abstract

Pelindian dengan pelarut asam sulfat untuk ekstraksi nikel dari bijih limonit Halmahera telah diteliti. Karakterisasi bijih menggunakan XRD, XRF, dan SEM. Pelindian dilakukan pada tekanan atmosfir. Kinetika pelarutan dipelajari dengan mengikuti model Shrinking Core. Pengaruh temperatur dan waktu yang dipelajari yaitu pada temperatur 30oC, 50oC, dan 90oC dengan waktu pelindian hingga 480 menit. Nilai % ekstraksi Ni maksimum sebesar 95,9% diperoleh pada pelindian selama 480 menit pada temperatur 90oC. Hasil analisis menunjukkan bahwa laju pelarutan Ni secara umum dikendalikan oleh difusi. Energi aktivasi untuk pelindian sebesar 83,8 kJ/mol. Mekanisme pelarutan bijih limonit diidentifikasikan dari grafik XRD residu hasil pelindian. Semakin tinggi temperatur dan semakin lama waktu pelindian memperbesar % ekstraksi Ni diikuti dengan meningkatnya intensitas puncak kuarsa.
Proses Reduksi Selektif Bijih Nikel Limonit Menggunakan Zat Aditif CaSO4 [Selective Reduction Process of Nickel Limonite With Adictive CaSO4] Mayangsari, Wahyu; Prasetyo, Agus Budi
Metalurgi Vol 31, No 1 (2016): Metalurgi Vol. 31 No. 1 April 2016
Publisher : Pusat Penelitian Metalurgi dan Material - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1007.727 KB) | DOI: 10.14203/metalurgi.v31i1.86

Abstract

This research aims to determine the optimum selective reduction conditions process of limonite nickel ore using additives CaSO4 and followed by magnetic separation to improve the nickel content. The selective reduction process was carried out at temperature range of 800 – 1100 °C, 1-4 h of reduction time, and the addition of the reducing agent and additives 5% - 20%. Limonite nickel ore was prepared by heating the ore inside the oven, size reduction and sieving to get ore with size under 100 mesh. Then, limonite nickel ore was mixed with reducing agent and additive. In addition, the limonite nickel ore which was mixed with the reducing agent and additive, was reduced in muffle furnace carbolite at certain temperature and time. Reduction result was weighed and concentrated by magnetic separation process, and the result was analysedby AAS (atomic absorption spectrometry) to determine of Ni contents in concentrates. The results showed that the higher a reduction temperature, Ni content and metallization of Ni was improved with the formation of Ni metal which separated from the Fe metal. The similar result was found with longer of reduction time. On the contrary, the higher an addition of reducing agent in the reduction mixture, the Ni content decreased slightly. The addition of CaSO4 can increasing the nickle content but it was not given the tendency for the good results. The highest increasing of nickel contents i.e. 2,44% was achieved at 1100 ºC of reduction temperature, 1 h of reduction time, 10% addition of reducing agent and 20% addition of CaSO4 additive. The recommended reduction temperature are 1100 °C for 1 h of reduction time, with 10% addition of reducing agent and 20% addition of CaSO4 additive.AbstrakPenelitian ini bertujuan untuk mengetahui kondisi optimum pada proses reduksi selektif bijih nikel limonit menggunakan zat aditif CaSO4 dan diikuti dengan pemisahan magnetik untuk mendapatkan peningkatan kadar nikel. Proses reduksi selektif dilakukan pada rentang suhu 800 - 1100 °C, waktu reduksi 1 – 4 jam, serta penambahan reduktor dan aditif 5% - 20%. Preparasi bijih nikel limonit dilakukan dengan pemanasan bijih dalam oven, pengecilan ukuran dan pengayakan untuk mendapatkan bijih dengan ukuran lolos 100 mesh. Kemudian dilakukan pencampuran bijih nikel limonit dengan reduktor dan aditif. Campuran bijih nikel limonit kemudian direduksi dalam muffle furnace carbolite pada suhu dan waktu tertentu. Hasil reduksi kemudian ditimbang dan dikonsentrasikan menggunakan proses pemisahan magnetik dan hasilnya dianalisis dengan metode AAS (atomic absorption spectrometry) untuk mengetahui kadar Ni pada konsentrat. Hasil penelitian menunjukkan bahwa semakin tinggi suhu reduksi, peningkatan kadar Ni dan metalisasi logam Ni semakin tinggi, dengan terbentuknya logam Ni yang terpisah dari logam Fe. Hal yang sama juga terjadi jika waktu reduksi semakin lama. Namun, semakin banyak penambahan reduktor pada campuran reduksi, peningkatan kadar Ni semakin kecil. Penambahan CaSO4 dapat meningkatkan kadar nikel namun belum memberikan kecenderungan hasil yang baik. Peningkatan kadar Ni tertinggi yang didapatkan adalah 2,44%. Direkomendasikan untuk menggunakan suhu reduksi 1100 °C, waktu reduksi 1 jam, penambahan reduktor 10% dan penambahan aditif CaSO4 20%.
Effect of Slope Chute Angle of HAP Magnetic Separator to the Acquisition of Nickel Matte from Undersized Product Resulted by Pierce Smith Converter Machine Indah Ciptasari, Nurhayati; Arya Parande, Egidius; Wahyuadi Soedarsono, Johny; Budi Prasetyo, Agus; Mayangsari, Wahyu; Miftahul Ulum, Reza; Maksum, Ahmad
Recent in Engineering Science and Technology Vol. 1 No. 03 (2023): RiESTech Volume 01 No. 03 Years 2023
Publisher : MBI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59511/riestech.v1i03.18

Abstract

The prototype of a magnetic separator was initiated and manufactured for handling undersized products of Pierce Smith Converter which has been channeled to a temporary shelter called a matte pond. It was dredged three to four times a year and it’s costly. This expenditure can be minimized by the manufacture of magnetic separators that are used to attract undersized nickel products. The manufacture of this prototype uses a scale of 1:20.000 for the volume of water and nickel matte, while for chute and magnetic drums with a scale of 1:4 from the conditions in the field. This research aims to determine whether magnetic separators are relevant for installation in the nickel processing industry, with the slope angle of the chute and magnetic power as the main parameters. Thus the matte pond can be minimized and undersized products can be directly processed and distributed to consumers. The material used in the manufacture of this prototype is aluminum sheet 1/16 which is rolled for magnetic drums, aluminum sheet 1/8 in for chute, copper wire 0.5 mm and mild steel, lathe for rods and axis, and bending for magnetic holders. The result of this magnetic separator prototype is 24.48% nickel can be attracted.
Study on Leaching Lanthanum From Ferronickel Slag With Pretreatment Alkaline Fusion Yudomustafa, Fakhruddin; Febriana, Eni; Mayangsari, Wahyu; Ciptasari, Nurhayati Indah; Akbar, Ari Yustisia; Hendrik, Hendrik; Oediyani, Soesaptri; Prasetyo, Agus Budi
Metalurgi Vol 39, No 2 (2024): Metalurgi Vol. 39 No. 2 2024
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/metalurgi.2024.764

Abstract

Ferronickel slag is a byproduct of nickel ore smelting. Several efforts have been made to find alternative applications for ferronickel slag, such as the production of construction materials, cement, or geopolymers. It is reported that 38% is used for road construction, 48% is used for industrial cement mixtures, and the rest is used for fertilizers, geopolymers, and hydraulic techniques. Ferronickel slag still contains some valuable minerals such as silica, magnesium, nickel, iron, and several REEs (rare earth elements). One of the REEs, namely lanthanum, has many applications, including Ni-MH (nickel-metal hydride) batteries, phosphors for lamps, fluid-cracking catalysts for oil refining, LaNi5 for hydrogen gas storage, metal alloys for cast iron, steel and magnesium alloys, additives for glassware (for cameras), and lanthanum hexaboride ceramic. In connection with the slag, which contains impurities in strong silica compounds, it is necessary to carry out an alkaline fusion treatment. Alkaline fusion was carried out by varying the time from 0.5 to 4 hours and the ratio of the mass of slag to NaOH: 1:0.6, 1:1, 1:1.23, 1:1.47, and 1:1.84. The biggest decrease in SiO2 was in the 3-hour alkaline fusion time, from 48.347% to 27.3%, and in the mass ratio at 1:1.47, from 48.347% to 21.413%. This research aims to provide added value for ferronickel slag by extracting lanthanum by acid leaching using H2SO4 reagent by varying the time (5, 10, 30, 60, and 120 minutes), temperature (30, 60, and 90 °C), and concentration (1, 2, and 3 M). The results showed that the best leaching point was at 5 minutes, 30 °C, and 1 M, yielding a lanthanum extraction percentage of 38.082%.