Claim Missing Document
Check
Articles

Found 2 Documents
Search

Techno-economics analysis of biodiesel production from palm, jatropha curcas and calophyllum inophyllum as biofuel T.M.I. Mahlia; H.C. Ong; H.H. Masjuki
Proceedings of The Annual International Conference, Syiah Kuala University - Life Sciences & Engineering Chapter Vol 2, No 2 (2012): Engineering
Publisher : Syiah Kuala University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (744.641 KB)

Abstract

Transportation sector has a dominant role in global fuel consumption andgreenhouse gas emissions consequently. Biodiesel is a renewable energy that has great potential to serve as an alternative fuel to fossil diesel in diesel engine. Besides the technical barriers, there are several nontechnical limiting factors, which impede the development of biodiesel. Therefore, this study is focused on biodiesel production and techno-economic comparison among palm, jatropha curcas and calophyllum inophyllum biodiesel as transportation fuel. Moreover, the present study attempts to find out the impact of biodiesel implementation towards the energy scenario, environmental and economy. The largest economic factor for biodiesel production is feedstock cost. Furthermore, replacing 5% of diesel fuel with biodiesel fuel in road transport can reduce theCO2 emission up to 1200 ktons in year 2031. When the subsidy policy and tax exemption are implemented, biodiesel fuel is more competitive than fossil diesel at the current production costs. Therefore, this study serves as a guideline for further investigation on biodiesel production and other limitation factors before the wider utilization of biodiesel can be implemented.
Use of Green Mussel Shell as a Desulfurizer in the Blending of Low Rank Coal-Biomass Briquette Combustion Mahidin, Mahidin; Gani, Asri; Hani, M. Reza; Syukur, Muhammad; Hamdani, Hamdani; Khairil, Khairil; Rizal, Samsul; Hadi, Abdul; Mahlia, T.M.I.
Makara Journal of Technology Vol. 20, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Calcium oxide-based material is available abundantly and naturally. A potential resource of that material comes from marine mollusk shell such as clams, scallops, mussels, oysters, winkles and nerites. The CaO-based material has exhibited a good performance as the desulfurizer or adsorbent in coal combustion in order to reduce SO2 emission. In this study, pulverized green mussel shell, without calcination, was utilized as the desulfurizer in the briquette produced from a mixture of low rank coal and palm kernel shell (PKS), also known as bio-briquette. The ratio of coal to PKS in the briquette was 90:10 (wt/wt). The influence of green mussel shell contents and combustion temperature were examined to prove the possible use of that material as a desulfurizer. The ratio of Ca to S (Ca = calcium content in desulfurizer; S = sulfur content in briquette) were fixed at 1:1, 1.25:1, 1.5:1, 1.75:1, and 2:1 (mole/mole). The burning (or desulfurization) temperature range was 300-500 °C; the reaction time was 720 seconds and the air flow rate was 1.2 L/min. The results showed that green mussel shell can be introduced as a desulfurizer in coal briquette or bio-briquette combustions. The desulfurization process using that desulfurizer exhibited the first order reaction and the highest average efficiency of 84.5%.