Claim Missing Document
Check
Articles

Found 10 Documents
Search

PENGEMBANGAN MODUL PEMBELAJARAN TROUBLESHOOTING PADA SIMULATOR SISTEM PESAWAT UDARA UNTUK MENINGKATKAN FAULT-FREE PERFORMANCE Wira Gauthama
Langit Biru: Jurnal Ilmiah Aviasi Vol 13 No 01 (2020): Langit Biru: Jurnal Ilmiah Aviasi Vol.13 No.1 [Februari 2020]
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (550.687 KB)

Abstract

B.IndonesiaPenelitian ini dilatarbelakangi rendahnya fault-free performance pembelajaran troubleshooting sistem pesawat udara mahasiswa program Diploma III Program Studi Teknik Pesawat Udara STPI Curug. Tujuan penelitian untuk mengetahui pembelajaran troubleshooting saat ini, mendesain modul meningkatkan fault-free performance, implementasinya, desain penilaiannya dan menganalisis dampak modul. Metodelogi Research and Development dilakukan terhadap 56 mahasiswa Diploma III TPU XI melalui studi pendahuluan, perencanaan dan penyusunan modul serta pengembangan dan ujicoba sampai ditemukannya modul yang efektif meningkatkan fault-free performance. Pengumpulan data melalui wawancara dosen, studi dokumentasi, kuesioner mahasiswa, tes dan observasi. Modul temuan penelitian efektif meningkatkan fault-free performance diperlihatkan t-hitung ≥ t-tabel pada uji terbatas dan lebih luas serta peningkatan nilai rata – rata pada setiap tahap uji coba, mengindikasikan konten modul baru berdampak signifikan dan efektif meningkatnya fault-free performance melalui sub – sub kompetensi troubleshooting yaitu mengidentifikasi kerusakan, menentukan tingkat kerusakan, mengeliminasi kerusakan dan memperbaiki suku cadang. B.EnglishThis research is based on a fact of a low student’s achievement in faultfree performance in the Aircraft System Practical Learning of Prodi TPU, STPI Curug. The objectives are to identify the recent condition, designing a type of learning module which has an effectiveness to increase the fault-free performance, designing implementation steps, an appropriate evaluation, and to analyze the outcome of new module. By the Research and Development’s phases : prelimenary study, planning and designing phase, and development and tryout phase, 56 students are involved as the sampling. Data collecting comprises by teacher’s interview, documentation, students’s questionaire, test results, and observation. The results show the average t-values ≥ t-tables and a significant improvement of test result in a each tryout phase are definite indications that the development of an emergent content has a significant impact and increased effectivity to the achievement of fault-free performance, which is constructed by sub-competencies namely the ability of students in identifying the malfunction, determining the severity, elimination the cause, and replacing discrepants components.
RANCANG BANGUN FUEL SYSTEM UNTUK TURBOCHARGER GAS TURBINE ENGINE DENGAN INDUCER DIAMETER 1,75 INCH DI HANGAR 01 TEKNIK PESAWAT UDARA SEKOLAH TINGGI PENERBANGAN INDONESIA Ridho Ramadhan; Wira Gauthama; Zulham Hidayat
Langit Biru: Jurnal Ilmiah Aviasi Vol 13 No 02 (2020): Langit Biru: Jurnal Ilmiah Aviasi Vol.13 No.2 [Juni 2020]
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.367 KB)

Abstract

B.Indonesia Turbocharger adalah sebuah kompresor sentrifugal yang mendapat daya dari turbin yang sumber tenaganya berasal dari gas buang kendaraan. Pada perancangan ini turbocharger digunakan sebagai pengganti dari fungsi compressor dan turbine[1]. Rancang bangun turbocharger gas turbine engine ini dibagi menjadi beberapa sistem antara lain; combustion chamber, oil system, fuel system, dan ignition system. Dari teori – teori yang ada pada referensi[2], penulis melakukan proses perancangan yang terdiri dari beberapa bahasan, antara lain menentukan bahan bakar yang akan digunakan, hose, valve dan nozzle. Bahan bakar yang digunakan dalam rancangan ini adalah LPG (Liquid Petroleum Gas)[3]. Hose dan valve yang digunakan pada rancangan ini menyesuaikan dengan debit fluida yaitu sebesar 6,89 × 10−3 ????3/????, kecepatan fluida sebesar 87,77 m/s, dan tekanan aliran fluida sebesar 238,88 psi. Nozle yang digunakan berdiameter 0,005 m. Dari perancangan fuel system yang penulis rancang dapat menyalurkan bahan bakar yang dibutuhkan agar dapat menghasilkan pembakaran yang optimal. B.English Turbocharger is a centrifugal compressor that gets power from turbines whose power source comes from vehicle exhaust gases. In this design the turbocharger is used instead of the compressor and turbine function. Refer to the References, the authors carry out the design process which consists of several topics, including determining the fuel to be used, hose, valve and nozzle. The fuel used in this design is LPG (Liquid Petroleum Gas). The hose and valve used in this design adjusts to the fluid flow of 6,89 × 10−3 ????3/????, the fluid velocity of 87,77 m/s, and the pressure of the fluid flow of 238,88 psi. The nozle used was 0,005 m in diameter. From the design of the fuel system that the author designed can deliver the fuel needed to produce optimal combustion.
PERANCANGAN ALAT BACA LIFT DAN DRAG TIPE PEGAS ULIR DENGAN KAPASITAS 0 – 2,245 Lbs. PADA TEROWONGAN ANGIN KECEPATAN 14,493 Fps – 41,838 Fps. Wira Gauthama
Langit Biru: Jurnal Ilmiah Aviasi Vol 13 No 02 (2020): Langit Biru: Jurnal Ilmiah Aviasi Vol.13 No.2 [Juni 2020]
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (734.604 KB)

Abstract

B.Indonesia Terowongan angin model terbuka laboratorium fluida Prodi Teknik Pesawat Udara PPI Curug digunakan untuk pembelajaran pola aliran udara berbagai model airfoil. Studi awal menunjukkan kecepatan udara di ruang uji memiliki rentang 14,493 fps – 41,838 fps, laminar sehingga memenuhi syarat diperlengkapi alat baca Lift dan Drag. Metode timbangan overhead digunakan dan lendutan pegas ulir baja tahan karat berdiameter 0,8 mm untuk Lift 0 – 2,5 lbs dan 0,2 mm untuk Drag 0 – 0,4 lbs. Setiap mm lendutan pegas membaca 0,0122 lbs Lift dengan akurasi 0,02 mm sama dengan 0,000244 lbs, dan membaca 0,0022 lbs Drag dengan akurasi pada vernier 0,02 mm. Beban maksimum pada pegas dihitung berdasarkan gaya terbesar pada model uji NACA 0012, NACA 2424 dan NACA 4412. Hasil penelitian memperlihatkan alat baca dapat mengukur rentang Lift negatif terbesar terjadi dengan model NACA 0012 sebesar 2,2642 lbs dan Lift positif terbesar terjadi pada NACA 4412 sebesar 1,839 lbs. dengan lendutan maksimum pegas 199,47 mm. Beban tarik pegas terbesar mengukur nilai Drag terjadi pada model NACA 4412 sebesar 0,0393 Lbs dengan lendutan maksimum pegas 18 mm. B.English Open type wind tunnel within the fluid laboratory of Prodi Teknik Pesawat Udara PPI Curug was utilized solely for training purpose to examine the variation of airflow over many kinds of airfoil model. Preliminary research showed the airspeed in the test chamber exhibits the laminar flow with the velocity range of 14.493 – 41.838 fps, and was technically met with the requirements to be equipped with Lift and Drag balance. The design adopted the simple overhead troly type balance with stainless steel coil spring as the main components with 0.8 mm diameter to measure 0 – 2.5 lbs Lift and a 0.2 mm diameter to measure 0 – 0.4 lbs Drag. With the 0.02 mm accuracy. For each mm spring deflection results in reading capability of 0.0122 lbs Lift equal to 0.000244 lbs calculated Lift, and 0.0022 lbs Drag equal to 0.000009 lbs calculated Drag. Maximum load is analyzed referred to the highest force possessed by NACA 0012, 2424 and 2412 airfoil model. Research study shows the balance is capable to measure the range of aerodynamic force of 2.2642 lbs highest negative Lift with NACA 0012 and 1.839 lbs highest positive Lift with NACA 4412 producing maximum spring deflection of 199.47 mm. Maximum spring tension of Drag measurement is 0.0393 lbs force possessed by NACA 4412 with 18 mm deflection.
Pemanfaatann Arduino Uno pada Eksperimental Oil Leakage Detector Piston Engine Lycoming O-360 Imam Syafi'i; wira gauthama; Sihono Sihono
Langit Biru: Jurnal Ilmiah Aviasi Vol 15 No 01 (2022): Langit Biru: Jurnal Ilmiah Aviasi
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54147/langitbiru.v15i01.514

Abstract

One of the systems on the aircraft is the lubrication system. This system is very prone to problems, one of which is oil leakage, where the risk is hazardous if this condition is ignored, including the wear on moving parts that can occur such as in the gearbox and bearings so that engine performance can become abnormal and even result in accidents. This research objective was to develop an oil leak detector on the Lycoming O-360 engine based on the Arduino Uno. With the development of current microcontroller technology, the tool's design was made into an experimental tool used to detect oil leaks using a microcontroller. The research method uses the design method by Pahl and Beitz, which consists of four stages in a design: planning and analysis, concept design, form design, and detail design. The design research results are acrylic with a maximum temperature resistance of 88°C as a reservoir. As for the characteristics of the oil used in the Lycoming O-360 is grade SAE 50. The integrated components used include: Arduino UNO color sensor TCS3200, non-contact liquid sensor XKC-Y25, LCD 1602, I2C module, LED lights (red, yellow, green), buzzer, 6600 mAh battery, jumper cable, and 220 Ω resistor. The research concludes that the design of an Arduino UNO-based oil leak detector can run well and detect oil leakage.
RANCANG BANGUN FUEL SYSTEM UNTUK TURBOCHARGER GAS TURBINE ENGINE DENGAN INDUCER DIAMETER 1,75 INCH DI HANGAR 01 TEKNIK PESAWAT UDARA SEKOLAH TINGGI PENERBANGAN INDONESIA Ridho Ramadhan; Wira Gauthama; Zulham Hidayat
Langit Biru: Jurnal Ilmiah Aviasi Vol 13 No 02 (2020): Langit Biru: Jurnal Ilmiah Aviasi Vol.13 No.2 [Juni 2020]
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

B.Indonesia Turbocharger adalah sebuah kompresor sentrifugal yang mendapat daya dari turbin yang sumber tenaganya berasal dari gas buang kendaraan. Pada perancangan ini turbocharger digunakan sebagai pengganti dari fungsi compressor dan turbine[1]. Rancang bangun turbocharger gas turbine engine ini dibagi menjadi beberapa sistem antara lain; combustion chamber, oil system, fuel system, dan ignition system. Dari teori – teori yang ada pada referensi[2], penulis melakukan proses perancangan yang terdiri dari beberapa bahasan, antara lain menentukan bahan bakar yang akan digunakan, hose, valve dan nozzle. Bahan bakar yang digunakan dalam rancangan ini adalah LPG (Liquid Petroleum Gas)[3]. Hose dan valve yang digunakan pada rancangan ini menyesuaikan dengan debit fluida yaitu sebesar 6,89 × 10−3 ????3/????, kecepatan fluida sebesar 87,77 m/s, dan tekanan aliran fluida sebesar 238,88 psi. Nozle yang digunakan berdiameter 0,005 m. Dari perancangan fuel system yang penulis rancang dapat menyalurkan bahan bakar yang dibutuhkan agar dapat menghasilkan pembakaran yang optimal. B.English Turbocharger is a centrifugal compressor that gets power from turbines whose power source comes from vehicle exhaust gases. In this design the turbocharger is used instead of the compressor and turbine function. Refer to the References, the authors carry out the design process which consists of several topics, including determining the fuel to be used, hose, valve and nozzle. The fuel used in this design is LPG (Liquid Petroleum Gas). The hose and valve used in this design adjusts to the fluid flow of 6,89 × 10−3 ????3/????, the fluid velocity of 87,77 m/s, and the pressure of the fluid flow of 238,88 psi. The nozle used was 0,005 m in diameter. From the design of the fuel system that the author designed can deliver the fuel needed to produce optimal combustion.
PERANCANGAN ALAT BACA LIFT DAN DRAG TIPE PEGAS ULIR DENGAN KAPASITAS 0 – 2,245 Lbs. PADA TEROWONGAN ANGIN KECEPATAN 14,493 Fps – 41,838 Fps. Wira Gauthama
Langit Biru: Jurnal Ilmiah Aviasi Vol 13 No 02 (2020): Langit Biru: Jurnal Ilmiah Aviasi Vol.13 No.2 [Juni 2020]
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

B.Indonesia Terowongan angin model terbuka laboratorium fluida Prodi Teknik Pesawat Udara PPI Curug digunakan untuk pembelajaran pola aliran udara berbagai model airfoil. Studi awal menunjukkan kecepatan udara di ruang uji memiliki rentang 14,493 fps – 41,838 fps, laminar sehingga memenuhi syarat diperlengkapi alat baca Lift dan Drag. Metode timbangan overhead digunakan dan lendutan pegas ulir baja tahan karat berdiameter 0,8 mm untuk Lift 0 – 2,5 lbs dan 0,2 mm untuk Drag 0 – 0,4 lbs. Setiap mm lendutan pegas membaca 0,0122 lbs Lift dengan akurasi 0,02 mm sama dengan 0,000244 lbs, dan membaca 0,0022 lbs Drag dengan akurasi pada vernier 0,02 mm. Beban maksimum pada pegas dihitung berdasarkan gaya terbesar pada model uji NACA 0012, NACA 2424 dan NACA 4412. Hasil penelitian memperlihatkan alat baca dapat mengukur rentang Lift negatif terbesar terjadi dengan model NACA 0012 sebesar 2,2642 lbs dan Lift positif terbesar terjadi pada NACA 4412 sebesar 1,839 lbs. dengan lendutan maksimum pegas 199,47 mm. Beban tarik pegas terbesar mengukur nilai Drag terjadi pada model NACA 4412 sebesar 0,0393 Lbs dengan lendutan maksimum pegas 18 mm. B.English Open type wind tunnel within the fluid laboratory of Prodi Teknik Pesawat Udara PPI Curug was utilized solely for training purpose to examine the variation of airflow over many kinds of airfoil model. Preliminary research showed the airspeed in the test chamber exhibits the laminar flow with the velocity range of 14.493 – 41.838 fps, and was technically met with the requirements to be equipped with Lift and Drag balance. The design adopted the simple overhead troly type balance with stainless steel coil spring as the main components with 0.8 mm diameter to measure 0 – 2.5 lbs Lift and a 0.2 mm diameter to measure 0 – 0.4 lbs Drag. With the 0.02 mm accuracy. For each mm spring deflection results in reading capability of 0.0122 lbs Lift equal to 0.000244 lbs calculated Lift, and 0.0022 lbs Drag equal to 0.000009 lbs calculated Drag. Maximum load is analyzed referred to the highest force possessed by NACA 0012, 2424 and 2412 airfoil model. Research study shows the balance is capable to measure the range of aerodynamic force of 2.2642 lbs highest negative Lift with NACA 0012 and 1.839 lbs highest positive Lift with NACA 4412 producing maximum spring deflection of 199.47 mm. Maximum spring tension of Drag measurement is 0.0393 lbs force possessed by NACA 4412 with 18 mm deflection.
Pemanfaatann Arduino Uno pada Eksperimental Oil Leakage Detector Piston Engine Lycoming O-360 Imam Syafi'i; wira gauthama; Sihono Sihono
Langit Biru: Jurnal Ilmiah Aviasi Vol 15 No 01 (2022): Langit Biru: Jurnal Ilmiah Aviasi
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54147/langitbiru.v15i01.514

Abstract

One of the systems on the aircraft is the lubrication system. This system is very prone to problems, one of which is oil leakage, where the risk is hazardous if this condition is ignored, including the wear on moving parts that can occur such as in the gearbox and bearings so that engine performance can become abnormal and even result in accidents. This research objective was to develop an oil leak detector on the Lycoming O-360 engine based on the Arduino Uno. With the development of current microcontroller technology, the tool's design was made into an experimental tool used to detect oil leaks using a microcontroller. The research method uses the design method by Pahl and Beitz, which consists of four stages in a design: planning and analysis, concept design, form design, and detail design. The design research results are acrylic with a maximum temperature resistance of 88°C as a reservoir. As for the characteristics of the oil used in the Lycoming O-360 is grade SAE 50. The integrated components used include: Arduino UNO color sensor TCS3200, non-contact liquid sensor XKC-Y25, LCD 1602, I2C module, LED lights (red, yellow, green), buzzer, 6600 mAh battery, jumper cable, and 220 Ω resistor. The research concludes that the design of an Arduino UNO-based oil leak detector can run well and detect oil leakage.
RANCANG BANGUN FUEL SYSTEM UNTUK TURBOCHARGER GAS TURBINE ENGINE DENGAN INDUCER DIAMETER 1,75 INCH DI HANGAR 01 TEKNIK PESAWAT UDARA SEKOLAH TINGGI PENERBANGAN INDONESIA Ridho Ramadhan; Wira Gauthama; Zulham Hidayat
Langit Biru: Jurnal Ilmiah Aviasi Vol 13 No 02 (2020): Langit Biru: Jurnal Ilmiah Aviasi Vol.13 No.2 [Juni 2020]
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

B.Indonesia Turbocharger adalah sebuah kompresor sentrifugal yang mendapat daya dari turbin yang sumber tenaganya berasal dari gas buang kendaraan. Pada perancangan ini turbocharger digunakan sebagai pengganti dari fungsi compressor dan turbine[1]. Rancang bangun turbocharger gas turbine engine ini dibagi menjadi beberapa sistem antara lain; combustion chamber, oil system, fuel system, dan ignition system. Dari teori – teori yang ada pada referensi[2], penulis melakukan proses perancangan yang terdiri dari beberapa bahasan, antara lain menentukan bahan bakar yang akan digunakan, hose, valve dan nozzle. Bahan bakar yang digunakan dalam rancangan ini adalah LPG (Liquid Petroleum Gas)[3]. Hose dan valve yang digunakan pada rancangan ini menyesuaikan dengan debit fluida yaitu sebesar 6,89 × 10−3 ????3/????, kecepatan fluida sebesar 87,77 m/s, dan tekanan aliran fluida sebesar 238,88 psi. Nozle yang digunakan berdiameter 0,005 m. Dari perancangan fuel system yang penulis rancang dapat menyalurkan bahan bakar yang dibutuhkan agar dapat menghasilkan pembakaran yang optimal. B.English Turbocharger is a centrifugal compressor that gets power from turbines whose power source comes from vehicle exhaust gases. In this design the turbocharger is used instead of the compressor and turbine function. Refer to the References, the authors carry out the design process which consists of several topics, including determining the fuel to be used, hose, valve and nozzle. The fuel used in this design is LPG (Liquid Petroleum Gas). The hose and valve used in this design adjusts to the fluid flow of 6,89 × 10−3 ????3/????, the fluid velocity of 87,77 m/s, and the pressure of the fluid flow of 238,88 psi. The nozle used was 0,005 m in diameter. From the design of the fuel system that the author designed can deliver the fuel needed to produce optimal combustion.
PERANCANGAN ALAT BACA LIFT DAN DRAG TIPE PEGAS ULIR DENGAN KAPASITAS 0 – 2,245 Lbs. PADA TEROWONGAN ANGIN KECEPATAN 14,493 Fps – 41,838 Fps. Wira Gauthama
Langit Biru: Jurnal Ilmiah Aviasi Vol 13 No 02 (2020): Langit Biru: Jurnal Ilmiah Aviasi Vol.13 No.2 [Juni 2020]
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

B.Indonesia Terowongan angin model terbuka laboratorium fluida Prodi Teknik Pesawat Udara PPI Curug digunakan untuk pembelajaran pola aliran udara berbagai model airfoil. Studi awal menunjukkan kecepatan udara di ruang uji memiliki rentang 14,493 fps – 41,838 fps, laminar sehingga memenuhi syarat diperlengkapi alat baca Lift dan Drag. Metode timbangan overhead digunakan dan lendutan pegas ulir baja tahan karat berdiameter 0,8 mm untuk Lift 0 – 2,5 lbs dan 0,2 mm untuk Drag 0 – 0,4 lbs. Setiap mm lendutan pegas membaca 0,0122 lbs Lift dengan akurasi 0,02 mm sama dengan 0,000244 lbs, dan membaca 0,0022 lbs Drag dengan akurasi pada vernier 0,02 mm. Beban maksimum pada pegas dihitung berdasarkan gaya terbesar pada model uji NACA 0012, NACA 2424 dan NACA 4412. Hasil penelitian memperlihatkan alat baca dapat mengukur rentang Lift negatif terbesar terjadi dengan model NACA 0012 sebesar 2,2642 lbs dan Lift positif terbesar terjadi pada NACA 4412 sebesar 1,839 lbs. dengan lendutan maksimum pegas 199,47 mm. Beban tarik pegas terbesar mengukur nilai Drag terjadi pada model NACA 4412 sebesar 0,0393 Lbs dengan lendutan maksimum pegas 18 mm. B.English Open type wind tunnel within the fluid laboratory of Prodi Teknik Pesawat Udara PPI Curug was utilized solely for training purpose to examine the variation of airflow over many kinds of airfoil model. Preliminary research showed the airspeed in the test chamber exhibits the laminar flow with the velocity range of 14.493 – 41.838 fps, and was technically met with the requirements to be equipped with Lift and Drag balance. The design adopted the simple overhead troly type balance with stainless steel coil spring as the main components with 0.8 mm diameter to measure 0 – 2.5 lbs Lift and a 0.2 mm diameter to measure 0 – 0.4 lbs Drag. With the 0.02 mm accuracy. For each mm spring deflection results in reading capability of 0.0122 lbs Lift equal to 0.000244 lbs calculated Lift, and 0.0022 lbs Drag equal to 0.000009 lbs calculated Drag. Maximum load is analyzed referred to the highest force possessed by NACA 0012, 2424 and 2412 airfoil model. Research study shows the balance is capable to measure the range of aerodynamic force of 2.2642 lbs highest negative Lift with NACA 0012 and 1.839 lbs highest positive Lift with NACA 4412 producing maximum spring deflection of 199.47 mm. Maximum spring tension of Drag measurement is 0.0393 lbs force possessed by NACA 4412 with 18 mm deflection.
Pemanfaatann Arduino Uno pada Eksperimental Oil Leakage Detector Piston Engine Lycoming O-360 Imam Syafi'i; wira gauthama; Sihono Sihono
Langit Biru: Jurnal Ilmiah Aviasi Vol 15 No 01 (2022): Langit Biru: Jurnal Ilmiah Aviasi
Publisher : Politeknik Penerbangan Indonesia Curug

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54147/langitbiru.v15i01.514

Abstract

One of the systems on the aircraft is the lubrication system. This system is very prone to problems, one of which is oil leakage, where the risk is hazardous if this condition is ignored, including the wear on moving parts that can occur such as in the gearbox and bearings so that engine performance can become abnormal and even result in accidents. This research objective was to develop an oil leak detector on the Lycoming O-360 engine based on the Arduino Uno. With the development of current microcontroller technology, the tool's design was made into an experimental tool used to detect oil leaks using a microcontroller. The research method uses the design method by Pahl and Beitz, which consists of four stages in a design: planning and analysis, concept design, form design, and detail design. The design research results are acrylic with a maximum temperature resistance of 88°C as a reservoir. As for the characteristics of the oil used in the Lycoming O-360 is grade SAE 50. The integrated components used include: Arduino UNO color sensor TCS3200, non-contact liquid sensor XKC-Y25, LCD 1602, I2C module, LED lights (red, yellow, green), buzzer, 6600 mAh battery, jumper cable, and 220 Ω resistor. The research concludes that the design of an Arduino UNO-based oil leak detector can run well and detect oil leakage.