Claim Missing Document
Check
Articles

Found 3 Documents
Search

Use of Sulfuric Acid-Impregnated Biochar Catalyst in Making of Biodiesel From Waste Cooking Oil Via Leaching Method Sofyan, Muhammad Ihsan; Mailani, Putri Julpa; Setyawati, Avi Waras; Sulistia, Susi; Suciati, Fuzi; Hauli, Latifah; Putri, Reza Audina; Ndruru, Sun Theo C. L.; Mawarni, Rista Siti; Meliana, Yenny; Nurhayati, Nurhayati; Joelianingsih, Joelianingsih
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20113

Abstract

The biodiesel synthesis of waste cooking oil (WCO) over a impregnated biochar catalyst was systematically studied. This research aimed to prepare Biochar-based material that comes from coconut coir, activate it, and apply it as a catalyst to the esterification reaction of high-FFA waste cooking oil. Activation of the catalyst was done by impregnation H2SO4 solution in Biochar. The obtained catalyst was characterized by FTIR, XRF, XRD, surface area analyzer, and SEM-EDS. The esterification process was conducted by varying the catalyst weight (5, 7, and 10 wt%) and the reaction temperature (55 and 60 °C). The obtained liquid yields were characterized by GC-MS. The study found that the esterification process worked best with 10 wt% catalysts, a 1:76 mole ratio of oil to alcohol, and a reaction temperature of 60 °C. The waste cooking oil was successfully converted into biodiesel, reaching 84.50% of yield and 77.30% of purity (methyl ester content). Meanwhile, testing using national biodiesel standards with parameter limits of density, viscosity, iodine number, and acid number shows results that meet the requirements. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Molecular Vibration and Physicochemical Performance of Proton-Conducting Solid Polymer Electrolyte Membrane based on CMC/PVA/CH3COONH4 Ndruru, Sun Theo Constan Lotebulo; Rachmadhanti, Elvira Nur; Fridarima, Shanny; Berghuis, Nila Tanyela; Prasetyo, Ridho; Yulianti, Evi; Hayati, Atika Trisna; Adriana, Risda; Siregar, Rabiyatul Adawiyah; Sofyan, Muhammad Ihsan; Sampora, Yulianti; Annas, Dicky; Madiabu, Muhammad Jihad
Molekul Vol 19 No 3 (2024)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2024.19.3.11001

Abstract

This work studied examined the influence of ammonium acetate (CH3COONH4) on CMC/PVA-based solid polymer electrolyte (SPE) membranes, focusing on molecular vibration, proton conductivity, and physicochemical properties. SPE membranes were prepared via the casting solution method with varying CH3COONH4 concentrations to determine the optimal proton conductivity. Various characterizations, including FTIR, EIS, XRD, and TGA, were performed. The optimal membrane condition was achieved with 10 wt-% CH3COONH4 in the CMC/PVA (80/20) blend, yielding proton conductivity of 3.93×10⁻⁴ S/cm and favorable mechanical, thermal, and crystallinity properties, making it suitable for proton-conducting polymer applications. Keywords: ammonium acetate, carboxymethyl cellulose, ionic conductivity, poly(vinyl alcohol), proton battery, solid electrolyte membrane
A Comparative Evaluation of Solid-State Catalysts for Synthesis of Non-Ionic Surfactant Based Oleic Acid for Enhanced Oil Recovery (EOR) Sampora, Yulianti; Sofyan, Muhammad Ihsan; Ghozali, muhammad; Triwulandari, Evi; Restu, Witta Kartika; Ndruru, Sun Theo Constan Lotebulo; Devy, Yenni Apriliany; Handayani, Annisa Fitriyah; Safitri, Gita Nur; Satria, Erza Eka
Molekul Vol 20 No 1 (2025)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2025.20.1.11077

Abstract

Abstract. The Enhanced Oil Recovery (EOR) process with chemical techniques carried out by injecting chemicals such as surfactants, can be an alternative to increase oil production, especially in old oil wells. This study investigated the best formulation of non-ionic surfactants based on the mole ratio of oleic acid and PEG-400 as well as catalyst types such as KOH and p-TSA 1%, which are used in surfactant synthesis to be able to increase oil production. The tests carried out are the value of acid, saponification, ester, and iodine, FTIR, NMR as well as a test of compatibility, phase behavior, and IFT. The results showed that the best formulation of ester polyethylene glycol oleate with reaction temperature conditions of 130oC was at a mole ratio of 1: 4 using a 1% p-TSA catalyst with a value of acid is 3,61 mg KOH/g, saponification is 144,12 mg KOH/g, ester is 140,51 mg KOH/g and iodine is 76,70 g I2/100 g. The compatibility tests and phase behavior show that this surfactant can be developed in chemical EOR with an IFT value of 2,6 x 10-1 mN/m. Keywords: Enhanced oil recovery, oleic acid, solid-state catalysts, synthesis