Claim Missing Document
Check
Articles

Found 5 Documents
Search

Numerical Simulation of Pyroclastic Flow of Karangetang Volcano Based on 2015 Eruption Activity Banggur, Willi FS; Patria, Cahya; Kriswati, Estu; Abdurrachman, Mirzam; Suantika, Gede; Syahbana, Devy Kamil; Korompis, Richard; Adriansyah, David; Gurasali, Aditya; Wenas, Alfred; Praja, Kurnia; Sentosa, Imam; Kusnadi, Iing; Shimomura, Makoto
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 1 (2024): JGEET Vol 09 No 01 : March (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.1.14217

Abstract

On May 7-9, 2015 the eruptive activity of Mount Karangetang released pyroclastic flows towards the Batuawang River for 3.6 km and hit Kora kora village which is located south of the Main Crater. This pyroclastic flow originated from lava flows during the effusive eruption period. MODIS satellite image hotspot data shows the lava flow extrusion rate and total volume at the peak began to increase since April 2015 and continued to show an increase until December 2015, with the estimated volume and lava extrusion rate on  April 22, 2015 reaching 4.16x106 m3 and 0.53 m3/s, respectively, and on December 9, 2015 the volume reached 1.67x107 m3 with a lava extrusion rate of 1.97 m3/s. The results of field checks show that this pyroclastic flow is dominated by block and ash, and by using numerical simulations show the deflection of pyroclastic flow in accordance with the flow field of the Batuawang river, and the splash of pyroclastic flow towards Kora kora village in addition to the location adjacent to the river flow and also controlled by the narrowing of the river channel due to the accumulation of material in the flow field. A total of 8 numerical simulation cases have been carried out, and in our opinion with an input volume of 500 x103 m3 and a flow material friction of 0.5 is a case that corresponds to a flow event that reaches a distance of 3.6 km from the Main Crater.  Taking into account the current activity conditions we used the same parameters to estimate the area that could be affected by pyroclastic flows in the future. Numerical simulation show that the pyroclastic flow traveled 5 km in a south-southwest direction from the top of the main crater.
The impact of weather Condition Changes on Vertical Distribution of Sulfides in Lake Maninjau Based on Observation Data Putri, Mutiara Rachmat; Jasalesmana, Taofik; Abdurrachman, Mirzam; Henny, Cynthia; Nomosatryo, Sulung; Albani, Alif Shidqie
LIMNOTEK Perairan Darat Tropis di Indonesia Vol. 30 No. 1 (2024)
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/limnotek.2024.2203

Abstract

Sulfide is a crucial parameter in volcanic lakes, as its levels and fluctuations in the lake determine the origin of sulfide and the extent of its impact on the lake ecosystem. In stratified lakes, the sulfide produced tends to be retained beneath the oxic layer. The sulfides rise towards the surface as the oxic layer thins triggered by decreased water column thermal stratification. Meanwhile, the strength or weakness of thermal stratification is greatly influenced by weather conditions. Lake Maninjau is a volcanic lake with a relatively high sulfide content. Its vertical distribution in the water column is highly dependent on the stratification of the water column. When stratification disappears, sulfide rises to the surface (locally known as tubo belerang) and has a negative impact on surface biota. The objective of this study is to examine the distribution of sulfides in the water column of Lake Maninjau under two different weather conditions. We perform two surveys to measure physicochemical parameters and sulfide concentration on 26‒29 November 2022 and 25‒26 August 2023 considering the seasonal pattern. We found that air temperatures and sunshine duration combined with precipitation and wind speed drive the thermal stratification of the water column. The lower air temperature, shorter sunshine duration, higher precipitation, and stronger wind speed in the first survey (west monsoon) compared with the second survey (east monsoon) resulted in lower stratification and triggered the elevated sulfide to the surface. In the middle of the lake, the surface sulfide measured during the first survey was 4.16 µg/L. Meanwhile, in the second survey, it was only observed at 1.16 µg/L. The distribution of sulfides within the water column of Lake Maninjau is regulated by the stratification of the water column, a process directly impacted by weather conditions.
The Deformation Responses As The Resulted Of The Tectonics In Apaumagida (Apowo), Enarotali And Legare Mountain Area of Papua Province Gultom, Maran; Dandy Waromi, Doodle; Abdurrachman, Mirzam; Yaner Ayomi , Iwan; Steven Wetipo, Yafet; Disti Mambrasar , Ela
International Journal of Science, Technology & Management Vol. 5 No. 6 (2024): November 2024
Publisher : Publisher Cv. Inara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46729/ijstm.v5i6.1212

Abstract

The deformation phenomenon in Central Mountain of Papua Province is very complex, isn’t there the uniformity of geology structure pattern (folds, joints, faults) as resulted of tectonics or reactivations of the geology structure of the lately rock to the upper early rock?. Therefore, measuring the geology structure had to be done with the surface geological mapping and the measured section traverse in the field. The research area distributed in three boundaries of tectonics in coordinate 135° 00’ 00” East - 136° 30’ 00” East and 3° 00’ 00” South - 4° 40’ 00” South. There are three research areas namely the Apaumagida area represent the Permian – Triassic Periods in coordinate 135°18’11,88” East - 135°43’20,14” East and 3°56’17,59” South - 4°8’28,44” South, the Enarotali area represent the Cretaceous – Paleocene Periods in coordinate 136°18’45,08” East - 136°29’42,00” East and 3°53’34,75” South - 4°5’16,03” South, and the Legare Mountain area represent the Tertiary – Quaternary Periods in coordinate 135° 28’ 54,87” East - 135° 47’ 16,80” East and 3° 25’ 31,17” South - 3° 6’ 6,25” South. According to the result and discussion, conclusioned that the direction of folds, jonts, faults were different between the oldest periods to the youngest periods, indicated by the direction diffrent of principal stress on N 5° – 27°E in Permian Period, N 349° - 358°E in Triassic Period, N 15° – 32°E in Cretaceous period, N 45° 54° E in Paleocene Period, N52° – 74°E in Tertiary Period N74°-78° E in Quarternary. Therefore, there were general pattern in the diffrent of folds, joints and faults from Permian – Triassic and Cretaceous – Paleocene but there’s conformity from the Tertiary – Quarternary. The general conclusion that the tectonic is actively roled for the geology structure developing in Central M.ountain area since Paleozoic to Quaternary.
RESERVOIR CHARACTERIZATION AND COMPARTMENT IN POSTRIFT DEPOSITED, UPPER TALANGAKAR FORMATION, BELUT FIELD, SOUTH SUMATRA BASIN Pramudito, Dimas; Nugroho, Dwiharso; Abdurrachman, Mirzam
Bulletin of Geology Vol 5 No 2 (2021): Bulletin of Geology
Publisher : Fakultas Ilmu dan Teknologi Kebumian (FITB), Institut Teknologi Bandung (ITB)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/bull.geol.2021.5.2.6

Abstract

Lapangan Belutmerupakan salah satu asetPertamina EP yang telah berproduksi lebih dari 50 tahun. Lapangan ini terletaksekitar 120 km di sebelahbarat dari Kota Palembang, Sumatera Selatan. Reservoir utama merupakan batupasir dan batugamping yang diendapkan pada awal Miocene dan termasuk ke dalam kelompok bagian atas Talangakar atau Transgresive Member (TRM). Penemuan hidrokarbondi area yang lebih down flank (utara) berawal dari pemboran step out di area penelitian. Berdasarkan pemboran tersebut diperoleh minyak dari reservoir batupasir dengan tekanan lebih besar dibandingkan di area eksisting. Saat ini Lapangan Belutsudah dalam tahap pengembangan, sehingga dibutuhkan model reservoir yang lebih komprehensif untuk strategi pengembangan lebih lanjut.Data yang digunakan dalam penelitianini adalah data batuan inti dari tigasumur, data rekaman talikawat dari 47 sumur, analisis fosil, borehole image, dan data seismik tiga dimensi (3D Karbela) serta data tekanan reservoir. Tahapan pertama penelitian adalah menentukanlitofasies dan asosiasi fasies dari data batuan inti dan biostratigrafi. Selanjutnya menentukan marker parasikuen dan sikuen dari pola electrofacies tiap sumur. Korelasi stratigrafisikuendilakukan untuk menentukan pola penyebaran fasies pengendapan. Karakterisasi reservoir secara tiga dimensi dilakukan melalui pemodelan fasies, volume serpih, porositas, permeabilitas, rock type, dansaturasi. Berdasarkan korelasi stratigrafisikuendan seismik stratigrafi, penyebaran fasies secara lateralmenunjukkan arah basinwardkesebelah selatan. Dalam penelitian ini semakin ke area selatan akan didominasi oleh endapan distal atau marine sebaliknya semakin ke utara maka akan ditemukan endapan terrestrial yang bersifat lebih sand prone. Adanya kenaikan muka air laut selama pengisian cekungan (retrogradational) menyebabkan perubahan fasies secara vertikal yaitu mulai dari sistem pengendapan channel, delta, hingga shallow marine.Data tekanan menunjukkan bagian utara (setelah di datumkan) memiliki tekanan sebesar 0.85 –0.99 (SG ekuivalen) sedangkan di area existing mempunyai tekanan 0.67 –0.78 (SG ekuivalen). Perbedaan tekanan disebabkan karena perbedaanasosiasi fasiespada sikuen yang sama antara area utara dengan area selatan. Berdasarkan analisis tekanan formasidan adanya penemuan potensi hidrokarbon di area down flank menunjukkan terdapat kompartemen antara area utara dan selatan (stratigraphic trap). Kata kunci: Formasi Talang Akar, down flank, pemodelan facies, kompartemen
VOLCANOSTRATIGRAPHY IN THE LOKON VOLCANO AREA AND ITS SURROUNDINGS, NORTH SULAWESI Senduk, Kevin Gerald; Abdurrachman, Mirzam
Bulletin of Geology Vol 7 No 2 (2023): Bulletin of Geology
Publisher : Fakultas Ilmu dan Teknologi Kebumian (FITB), Institut Teknologi Bandung (ITB)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/bull.geol.2023.7.2.2

Abstract

Gunung Api Lokon adalah gunung api Kuarter aktif yang berada di busur gunung api Sulawesi – Sangihe. Penelitian ini dilakukan untuk menjelaskan stratigrafi batuan gunung api Lokon berdasarkan analisis geomorfologi dan karakteristik petrologi.Berdasarkan analisis geomorfologi, area Gunung Lokon dibagi menjadi sembilan domain geomorfologi (Kayawu, Woloan, Kamasi, Irang, Lokon, Tatawiran, Galean, Kinilow dan Empung) pemisahan dilakukan berdasarkan pola kelurusan topografi, relief dan polasebaran topografi. Berdasarkan deskripsi litologi lapangan, litologi dibedakan menjadi 18 satuan geologi berupa aliran lava, aliran piroklastik, jatuhan piroklastik dan aliran lumpur. Satuan batuan Gunung Lokon dan sekitarnya sesuai SSI (Sandi Stratigrafi Indonesia) diklasifikasikan kedalam Khuluk Tatawiran, Khuluk Kinilow, Khuluk Empung dan Khuluk Tou Lokon. Khuluk Kinilow didominasi oleh endapan piroklastik dengan komposisi basal bertekstur skorius, sedangkan Khuluk Empung didominasi oleh aliran lava basal. Khuluk Tou Lokon terdiri dari 3 Gumuk yaitu Gumuk Lokon yang didominasi oleh aliran piroklastik, Gumuk Irang yang dimonasi oleh aliran lava dengan tekstur holohyalin dan Gumuk Tompuluan yang didominasi oleh jatuhan piroklastik. Fasies gunungapi Gunung Lokon dibagi menjadi Fasies Proksimal Tatawiran, Sentral Tatawiran, Fasies Proksimal Tatawiran, Fasies Sentral Kinilow, Fasies Proksimal Kinilow, Fasies Medial Kinilow, Fasies Sentral Empung, Fasies Proksimal Empung, Fasies Sentral Lokon, Fasies Proksimal Lokon, Fasies Midial Lokon, Fasies Sentral Irang, Fasies Proksimal Irang, Fasies Sentral Tompuluan danFasies Proksimal Tompuluan. Kata Kunci: Domain, gunung api, Lokon, SSI, vulkanostratigraf