
The Four Vertex Theorem and its Converse

Clay Shonkwiler
DRL 3E3A

October 6, 2006



The Theorems

Theorem 1 (Four Vertex Theorem). Every simple closed plane curve

has either constant curvature or the curvature function has at least two

local maxima and two local minima.

Local extrema of the curvature are called “vertices”, so the above says
that curves are either circles or have at least four vertices.

Theorem 2 (Converse to the Four Vertex Theorem). Every continuous,

real-valued function on the circle S1 which has at least two local maxima

and two local minima is the curvature function of a simple closed curve

in the plane.

The Four Vertex Theorem was proved in the positive curvature (convex)
case by Syamadas Mukhopadhyaya in 1909 and in the general case by Adolf
Kneser in 1912. The Converse to the Four Vertex Theorem was proved in
the convex case by Herman Gluck in 1971 and in the general case by Björn
Dahlberg in 1997 (appeared 2005).
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Why is the Four Vertex Theorem True?

1' = 1

2

2'

3

3'

Figure 1: Trying to build a counter-example.

• A curve built from arcs of circles cannot have only two vertices and
remain simple

• Using a limiting argument, this idea can be extended to a proof of the
Four Vertex Theorem for convex curves
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Why is simplicity a necessary assumption?

The following is an obvious example of a non-simple closed curve with
only two vertices:

Figure 2: The curve r = −1 − 2 sin θ
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A simple proof of the Four Vertex Theorem

Robert Osserman’s 1985 proof of the Four Vertex Theorem can be
distilled into a single phrase: consider the circumscribed circle.

Theorem 3 (Osserman). Let α be a simple closed curve of class C2 in the

plane, and C the circumscribed circle. If α∩C has at least n components,

then α has at least 2n vertices.

C

κ ≥ K κ < K

κ ≥ K

κ < K

κ ≥ K

κ < K

α

Figure 3: The curve α and its circumscribed circle.

The Four Vertex Theorem and its Converse 4



Proof of Osserman’s Theorem

To get points where κ < K, note there exists Q ∈ α1 to the “right” of
the line from P1 to P2. Form the circle C ′ through P1, Q and P2. Then
K′ < K. Translate C ′ until it is tangent to α1:
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Figure 4: The circle C ′ translated.

Note: κ(Q1) ≤ K′ < K.

This construction relies on the fact that we can pick P1 and P2 so that
the arc between them is less than a semi-circle.

The Four Vertex Theorem and its Converse 5



The Bonus Clause

If a component of α∩C is an arc rather than a point, we are guaranteed
two extra vertices, over and above the 2n given by Osserman’s Theorem.
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Figure 5: The bonus clause.

Here, the points R2 and R′
2

have curvature more than K, so P2 is now
a local minimum.

Completing the Proof: Osserman’s Theorem plus the bonus clause
yields the full Four Vertex Theorem because, if α ∩ C has only one
component, that component must be an arc (in fact, at least a semi-
circle).
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The Converse to the Four Vertex Theorem

Theorem 4. Let κ : S1 → R be a continuous function which is either

a nonzero constant or else has at least two local maxima and two local

minima. Then there is an embedding α : S1 → R
2 whose curvature at

the point α(t) is κ(t) for all t ∈ S1.
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Basic idea in the convex case

Let κ : S1 → R be continuous and strictly positive and think of the
parameter on S1 as the angle of inclination θ of the desired curve α.

It’s easy to see that the curve α : [0, 2π] → R
2 with curvature κ(θ) at

the point α(θ) is given by

α(θ) =

∫ θ

0

(cos θ, sin θ)

κ(θ)
dθ.

In general, α will not close up, so we define the error vector E =
α(2π) − α(0) which measures the failure of α to close up.

α(2π)

E

α(0)

α(θ) θ

Figure 6: The error vector E.
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So what does this get us?

If the curvature function κ has at least two local maxima and two local
minima, we want to find a loop of diffeomorphisms h of the circle so that
when we construct curves αh : [0, 2π] → R

2 whose curvature at the point
αh(θ) is κ◦h(θ), the corresponding error vectors E(h) will wind once around
the origin. Furthermore, we will do this so that the loop is contractible in
the group Diff(S1) of diffeomorphisms of the circle, and conclude that for
some h “inside” this loop, the curve αh will have error vector E(h) = 0,
and hence close up to form a smooth simple closed curve.

Its curvature at the point αh(θ) is κ ◦ h(θ), so if we write αh(θ) =
αh ◦h−1 ◦h(θ), and let h(θ) = t, then its curvature at the point αh◦h−1(t)
is κ(t). Therefore α = αh ◦ h−1 is a reparametrization of the same curve,
whose curvature at the point α(t) is κ(t).
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The proof in one picture

Figure 7: A curve tries unsuccessfully to close up.
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How do we find this loop of diffeomorphisms?

We want to replace κ by a simpler function that is “close” to κ. The
most näıve idea is to approximate κ by a step function.

Since κ is strictly positive and has at least two local maxima and two
local minima, there exist 0 < a < b such that κ takes values a, b, a, b at
four points in order around the circle.

Precompose κ by a diffeomorphism h1 so that κ◦h1 is ǫ-close in measure
to a step function κ0 taking values a, b, a, b on arcs of length 2π.

ε/4

κ ◦ h
1
 ~ b

ε/4

κ ◦ h
1
 ~ a

ε/4

κ ◦ h
1
 ~ b

ε/4

κ ◦ h
1
 ~ a

Figure 8: κ ◦ h1 is ǫ-close in measure to the step function κ0.

Note: κ ◦ h1 and κ0 are C1-close
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A snake tries to eat its tail

We consider a subset of diffeomorphisms of the circle, eight of which
are depicted here:

Figure 9: A curve tries unsuccessfully to close up.

Since each of these diffeomorphisms leaves the south pole fixed, this
loop in Diff(S1) is contractible.
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Completing the convex case

Since this loop of diffeomorphisms is contractible in Diff(S1), it follows
that for some h ∈ Diff(S1), the corresponding curve with curvature κ0 ◦ h
has error vector zero, so it closes up. Of course, this is obvious: if h = Id,
then the below curve with curvature κ0 closes up.

Figure 10: Preassign κ0 and.....get the “bicircle”.

The point, though, is that this argument is robust and, since the
curves are C1-close, applies equally well to the curvature function κ ◦ h1.
Therefore, there is some diffeomorphism h of S1 so that the curve with
curvature κ◦h1◦h is a strictly convex simple closed curve. Reparametrizing
as discussed above shows that this curve has curvature κ, completing the
proof in the convex case.
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The full converse

When we envision arbitrary simple closed curves, it’s natural to think of
curves like these:

Figure 11: Two plane curves

Dahlberg’s key idea, though, was that, by precomposing with a suitable
diffeomorphism, an arbitrary curve can be made to look like this:

Figure 12: We should envision arbitrary curves like this
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Dahlberg’s proof strategy

The plan is to adapt the winding number argument from the convex
case, especially the important role played by step functions.

To make the winding number argument work, Dahlberg exhibits a
2-cell D ⊂ Diff(S1) centered at the origin and satisfying a certain
transversality condition which guarantees the winding number argument
works on arbitrarily small loops in D about its center.
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Configuration Space

We want to define a configuration space of four ordered points on a
circle to help visualize the situation.

• Changing the sign of κ if necessary, the fact that κ has two local maxima
and two local minima ensures that there exist 0 < a < b such that κ
takes on values a, b, a, b at four points in order along the circle.

• Find a preliminary diffeomorphism h1 of S1 so that κ ◦ h1 is ǫ-close in
measure to the same step function κ0 we defined in the convex case.

• We focus on κ0 and its compositions κ0 ◦ h as h ranges over Diff(S1).
These are all step functions with values a, b, a, b on four arcs determined
by some points p1, p2, p3, p4. Making scalings where appropriate to make
the total curvature equal 2π, construct a curve from circular arcs with
curvatures proportional to a, b, a, b and let E(p1, p2, p3, p4) denote the
error vector for this curve.

• Let CS denote the configuration space of order 4-tuples (p1, p2, p3, p4)
of distinct points on S1.
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CS and its core
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Figure 13: An element of the configuration space CS.

Note: CS is diffeomorphic to S1 × R
3.

• The error vector E(p1, p2, p3, p4) defines a map E : CS → R
2. When E

vanishes, the corresponding curve closes up. We call the kernel of E the
core of CS, denoted CS0.

• It’s easy to see that such curves close up if and only if opposite arcs
are equal in length, so (p1, p2, p3, p4) ∈ CS lies in CS0 if and only if p1

and p3 are antipodal and p2 and p4 are antipodal, which occurs precisely
when p1 − p2 + p3 − p4 = 0 in the complex plane.

• CS0 is diffeomorphic to S1 × R.
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The reduced configuration space

Let RCS ⊂ CS be the subset where p1 = 1. Then RCS ≃ R
3 and we

have a homeomorphism S1 × RCS → CS given by

(

eiθ, (1, p, q, r)
)

7→
(

eiθ, eiθp, eiθq, eiθr
)

Now, change coordinates by writing

p = e2πix, q = e2πiy, r = e2πiz.

Then RCS can be represented as an open solid tetrahedron:

x

y

z

(0,0,1) (0,1,1)

(0,0,0)

(1,1,1)

Figure 14: The reduced configuration space RCS
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The core

A point (1, p, q, r) in RCS is in the core if and only if 1 and q are
antipodal and p and r are antipodal. Hence, RCS0 := RCS ∩CS0 is given
by

0 < x < y =
1

2
< z = x +

1

2
< 1.

RCS0 is pictured below:

x

y

z

(1/2,1/2,1)

(0,1/2,1/2)

(0,0,0)

(0,1,1)
(0,0,1)

(1,1,1)

Figure 15: The core of the reduced configuration space.
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Topology of the error map

Let λ be a loop in CS − CS0 which bounds a disc in CS and links
CS0 once (pictured below in RCS). Then we have the following two
propositions about λ:

Figure 16: A loop in the reduced configuration space.

Proposition 5. E(λ) has winding number ±1 about the origin in R
2.

This proposition says that plane curves built as described above are
capable of exhibiting the winding number phenomenon which makes the
proof work. It follows directly from:

Proposition 6. The differential of E : RCS → R
2 is surjective at each

point of RCS0.
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Dahlberg’s disk D

We restrict our attention to diffeomorphisms lying in the disk D ⊂
Diff(S1) consisting of the special Möbius transformations

gβ(z) =
z − β

1 − β̄z

where |β| < 1.

β/|β|

−β/|β|

β

−β

0

Figure 17: The action of gβ on the unit disk in the complex plane.

These maps are all isometries of the disk model of the hyperbolic plane.
g0 is the identity and, for β 6= 0, gβ is a hyperbolic translation along the

line through 0 and β taking β to 0. The points β

|β| and − β

|β| on the circle

at infinity are the only fixed points of gβ.
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Another transversality result

If gβ ∈ D and P = (p1, p2, p3, p4) ∈ CS, then we define

gβ(P ) = (gβ(p1), gβ(p2), gβ(p3), gβ(p4))

so that D acts on CS.

Proposition 7. The evaluation map CS0 × D → CS given by (P, gβ) 7→
gβ(P ) is a diffeomorphism.

Corollary 8. For each fixed point P ∈ CS0, the evaluation map gβ 7→
gβ(P ) is a smooth embedding of Dahlberg’s disk D into CS which meets

the core transversally at P and nowhere else.
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The image of D in RCS

If we fix the point P = (1, i,−1,−i) ∈ CS and compose the map
D → CS with the projection CS → RCS, the following are two pictures
of the image of D in RCS:
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1
1

0

1

1
1

Figure 18: Two views of Dahlberg’s disk.

We can see that the image of D really does meet the core transversally.
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Grand finale

Start with a continuous, preassigned curvature function κ : S1 → R

which has at least two local maxima and two local minima. We want to
find an embedding α : S1 → R

2 with curvature κ(t) at each point α(t).

Changing the sign of κ if necessary, there are real numbers 0 < a < b
and four points on S1 in counterclockwise order where κ takes the values
a, b, a, b in succession.

The points 1, i,−1,−i divide S1 into four equal arcs of length π/2. Let
κ0 be the step function taking values a, b, a, b on these arcs.

Given ǫ > 0, we find a preliminary diffeomorphism h1 of S1 such that
κ ◦ h1 is ǫ close in measure to κ0. Rescale both to achieve total curvature
2π and they will still be ǫ close in measure for a new small ǫ.
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Apply the winding number argument to κ0

Consider P0 = (1, i,−1,−i) ∈ CS0 and map D to CS by sending
gβ 7→ gβ(P0). By Corollary 8, this map is a smooth embedding which meets
CS0 transversally at P0 and nowhere else.

By Proposition 5, each loop |β| = constant in D is sent to a loop in
R

2 − {0} with winding number ±1 about the origin.

More concretely, let c(β)κ0 ◦ gβ be the rescaling of the curvature step
function which has total curvature 2π and let α(β) : [0, 2π] → R

2 be the
corresponding arc-length parametrized curve with this curvature function.
As β circles once around the origin, the corresponding loop of error vectors
E(α(β)) has winding number ±1 about the origin.
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Transfer this winding number argument to κ

Let c(h1, β)κ ◦ h1 ◦ gβ be the rescaling of the curvature function κ ◦
h1 ◦ gβ which has total curvature 2π. Let α(h1, β) : [0, 2π] → R

2 be the
corresponding arc-length parametrized curve with this curvature function.

Fixing |β|, we can choose ǫ sufficiently small so that α(h1, β) is C1-close
to α(β), the curve corresponding to the step function κ0. Then as β
circles around the origin, the loop of error vectors E(α(h1, β)) will also have
winding number ±1 about the origin.

Therefore, there exists a diffeomorphism gβ′ with |β′| ≤ |β| so that
E(α(h1, β

′)) = 0, so the curve α(h1, β
′) closes up smoothly. If |β|

sufficiently small, then α(h1, β
′) will be as close as we like to the fixed

bicircle with curvature c0κ0 and thus will be simple.

The simple closed curve α(h1, β
′) realizes the curvature function

c(h1, β
′)κ ◦ h1 ◦ gβ′. Rescaling realizes the curvature function κ ◦ h1 ◦ gβ′

and thus, after reparametrization, it realizes the curvature function κ,
completing the proof of the converse of the Four Vertex Theorem.
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Further Reading

Content and images shamelessly stolen from “The Four Vertex Theorem
and its Converse”, by Dennis DeTurck, Herman Gluck, Daniel Pomerleano
and Shea Vick, available on the arXiv as math.DG/0609268.

Thanks!
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