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The Theorems

Theorem 1 (Four Vertex Theorem). Fvery simple closed plane curve
has either constant curvature or the curvature function has at least two
local maxima and two local minima.

Local extrema of the curvature are called “vertices”, so the above says
that curves are either circles or have at least four vertices.

Theorem 2 (Converse to the Four Vertex Theorem). Every continuous,
real-valued function on the circle S* which has at least two local mazima
and two local minima is the curvature function of a simple closed curve
wn the plane.

The Four Vertex Theorem was proved in the positive curvature (convex)
case by Syamadas Mukhopadhyaya in 1909 and in the general case by Adolf
Kneser in 1912. The Converse to the Four Vertex Theorem was proved in
the convex case by Herman Gluck in 1971 and in the general case by Bjorn
Dahlberg in 1997 (appeared 2005).
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Why is the Four Vertex Theorem True?

Figure 1: Trying to build a counter-example.

e A curve built from arcs of circles cannot have only two vertices and
remain simple

e Using a limiting argument, this idea can be extended to a proof of the
Four Vertex Theorem for convex curves
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Why is simplicity a necessary assumption?

The following is an obvious example of a non-simple closed curve with
only two vertices:

Figure 2: The curve r = —1 — 2sin6
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A simple proof of the Four Vertex Theorem

Robert Osserman’s 1985 proof of the Four Vertex Theorem can be
distilled into a single phrase: consider the circumscribed circle.

Theorem 3 (Osserman). Let o be a simple closed curve of class C? in the
plane, and C' the circumscribed circle. If aNC' has at least n components,
then a has at least 2n vertices.

K> K
K>K
‘ k> K

Figure 3: The curve a and its circumscribed circle.
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Proof of Osserman’s Theorem

To get points where kK < K, note there exists () € ay to the “right” of
the line from P; to P,. Form the circle C’ through P;, @ and P,. Then
K’ < K. Translate C’ until it is tangent to oq:

Figure 4: The circle C’ translated.

Note: kK(Q1) < K' < K.

This construction relies on the fact that we can pick P; and P; so that
the arc between them is less than a semi-circle.
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The Bonus Clause

If a component of aNC'is an arc rather than a point, we are guaranteed
two extra vertices, over and above the 2n given by Osserman’s Theorem.

Figure 5: The bonus clause.

Here, the points Ro and RY have curvature more than K, so P is now
a local minimum.

Completing the Proof: Osserman’s Theorem plus the bonus clause
yields the full Four Vertex Theorem because, if a« N C has only one
component, that component must be an arc (in fact, at least a semi-
circle).
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The Converse to the Four Vertex Theorem

Theorem 4. Let k : S' — R be a continuous function which is either
a nonzero constant or else has at least two local maxima and two local
minima. Then there is an embedding o : S — R? whose curvature at
the point o(t) is k(t) for allt € S*.
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Basic idea in the convex case

Let kK : S' — R be continuous and strictly positive and think of the
parameter on S as the angle of inclination 0 of the desired curve .

It's easy to see that the curve « : [0,27] — R? with curvature x(6) at
the point «(#) is given by

B ? (cos 0, sin 0)
a(0) _/0 =(0) do.

In general, a will not close up, so we define the error vector £ =
a(27) — a(0) which measures the failure of « to close up.

o(0)

Figure 6: The error vector E.
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So what does this get us?

If the curvature function k has at least two local maxima and two local
minima, we want to find a loop of diffeomorphisms h of the circle so that
when we construct curves ay, : [0, 27] — R? whose curvature at the point
ap(0) is koh(#), the corresponding error vectors E(h) will wind once around
the origin. Furthermore, we will do this so that the loop is contractible in
the group Diff(S!) of diffeomorphisms of the circle, and conclude that for
some h “inside” this loop, the curve ay will have error vector E(h) = 0,
and hence close up to form a smooth simple closed curve.

Its curvature at the point ay(0) is ko h(6), so if we write ap(0) =
apoh~toh(0), and let h(0) = t, then its curvature at the point o, 0 h ™1 ()
is k(t). Therefore & = ay, o h™! is a reparametrization of the same curve,
whose curvature at the point «(t) is x(t).
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The proof in one picture

%

Figure 7: A curve tries unsuccessfully to close up.
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How do we find this loop of diffeomorphisms?

We want to replace k by a simpler function that is “close” to k. The
most naive idea is to approximate s by a step function.

Since k is strictly positive and has at least two local maxima and two
local minima, there exist 0 < a < b such that x takes values a,b,a,b at
four points in order around the circle.

Precompose k by a diffeomorphism h; so that Kohq is e-close in measure
to a step function kg taking values a, b, a, b on arcs of length 2.

e/4

&/4 e/4

€/4

Figure 8: ko hy is e-close in measure to the step function k.

Note: x o hy and kg are C'-close

The Four Vertex Theorem and its Converse 11



A snake tries to eat its tail

We consider a subset of diffeomorphisms of the circle, eight of which
are depicted here:

Figure 9: A curve tries unsuccessfully to close up.

Since each of these diffeomorphisms leaves the south pole fixed, this
loop in Diff(S') is contractible.
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Completing the convex case

Since this loop of diffeomorphisms is contractible in Diff(S1), it follows
that for some h € Diff(S'), the corresponding curve with curvature kg o h
has error vector zero, so it closes up. Of course, this is obvious: if A = Id,
then the below curve with curvature kg closes up.

Figure 10: Preassign kg and.....get the “bicircle”.

The point, though, is that this argument is robust and, since the
curves are C''-close, applies equally well to the curvature function x o h;.
Therefore, there is some diffeomorphism h of S! so that the curve with
curvature kohyoh is a strictly convex simple closed curve. Reparametrizing
as discussed above shows that this curve has curvature x, completing the
proof in the convex case.
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The full converse

When we envision arbitrary simple closed curves, it's natural to think of
curves like these:

Figure 11: Two plane curves

Dahlberg’s key idea, though, was that, by precomposing with a suitable
diffeomorphism, an arbitrary curve can be made to look like this:

Figure 12: We should envision arbitrary curves like this
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Dahlberg’s proof strategy

The plan is to adapt the winding number argument from the convex
case, especially the important role played by step functions.

To make the winding number argument work, Dahlberg exhibits a
2-cell D C Diff(S!) centered at the origin and satisfying a certain
transversality condition which guarantees the winding number argument
works on arbitrarily small loops in D about its center.
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Configuration Space

We want to define a configuration space of four ordered points on a
circle to help visualize the situation.

e Changing the sign of x if necessary, the fact that s has two local maxima
and two local minima ensures that there exist 0 < a < b such that &
takes on values a, b, a, b at four points in order along the circle.

e Find a preliminary diffeomorphism h; of S! so that x o hy is e-close in
measure to the same step function kg we defined in the convex case.

e We focus on kg and its compositions kg o h as h ranges over Diff(S?).
These are all step functions with values a, b, a, b on four arcs determined
by some points p1, p2, p3, p4. Making scalings where appropriate to make
the total curvature equal 27, construct a curve from circular arcs with
curvatures proportional to a,b,a,b and let E(p1,p2,ps,ps) denote the
error vector for this curve.

e Let C'S denote the configuration space of order 4-tuples (p1, p2, p3, P4)
of distinct points on S*.
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C'S and its core

Figure 13: An element of the configuration space C'S.

Note: CS is diffeomorphic to S x R3.

e The error vector E(p1,p2, p3, pa) defines a map £ : CS — R%. When E

vanishes, the corresponding curve closes up. We call the kernel of E the
core of C'S, denoted C'5j.

e |t's easy to see that such curves close up if and only if opposite arcs
are equal in length, so (p1,p2, p3,pa) € CS lies in CSy if and only if py
and ps are antipodal and ps and p4 are antipodal, which occurs precisely
when p1 — ps + p3 — p4 = 0 in the complex plane.

o CSy is diffeomorphic to S* x R.
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The reduced configuration space

Let RC'S C CS be the subset where p; = 1. Then RC'S ~ R3 and we
have a homeomorphism S x RCS — CS given by

(e, (1,p,q,r)) — (e, e"p,eq,er)
Now, change coordinates by writing

_ 2mx 21y

p=ce : g=-ce : r = 2™,

Then RC'S can be represented as an open solid tetrahedron:

V4
(0,0,1) 0,1,1)

(1,1,1),

(0,0,0)

Figure 14: The reduced configuration space RC'S
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The core

A point (1,p,q,r) in RCS is in the core if and only if 1 and ¢ are
antipodal and p and r are antipodal. Hence, RC'Sy := RCSNCS is given
by

1 1
O<x<y:§<z:x—|—§<1.

RC'Sj is pictured below:

0.0.1) (0,1,1)

(0,1/2,1/2)

X

Figure 15: The core of the reduced configuration space.
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Topology of the error map

Let A be a loop in C'S — CSy which bounds a disc in C'S and links
C'Sy once (pictured below in RC'S). Then we have the following two
propositions about A:

Figure 16: A loop in the reduced configuration space.
Proposition 5. F(\) has winding number =1 about the origin in RZ.

This proposition says that plane curves built as described above are
capable of exhibiting the winding number phenomenon which makes the
proof work. It follows directly from:

Proposition 6. The differential of E : RCS — R? is surjective at each
point of RCSy.
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Dahlberg’s disk D

We restrict our attention to diffeomorphisms lying in the disk D C
Diff (S1!) consisting of the special Mobius transformations

z—p

98(2)

:1—62

where |3| < 1.

Figure 17: The action of gg on the unit disk in the complex plane.

These maps are all isometries of the disk model of the hyperbolic plane.
go is the identity and, for 3 # 0, gg is a hyperbolic translation along the
line through 0 and (3 taking 3 to 0. The points % and —% on the circle
at infinity are the only fixed points of gg.
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Another transversality result

If g3 € D and P = (p1,p2,p3,pa) € C'S, then we define

938(P) = (95(p1), 95(12), 95(13), 95(P4))
so that D acts on C'S.

Proposition 7. The evaluation map C'Sy x D — CS given by (P, gg) —
g3(P) is a diffeomorphism.

Corollary 8. For each fized point P € CSy, the evaluation map gg —
g3(P) is a smooth embedding of Dahlberg’s disk D into C'S which meets
the core transversally at P and nowhere else.
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The image of D in RC'S

If we fix the point P = (1,7,—1,—2) € C'S and compose the map
D — CS with the projection C'S — RC'S, the following are two pictures
of the image of D in RC'S:

Figure 18: Two views of Dahlberg's disk.

We can see that the image of D really does meet the core transversally.
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Grand finale

Start with a continuous, preassigned curvature function x : S - R
which has at least two local maxima and two local minima. We want to
find an embedding o : S' — R? with curvature (t) at each point a(t).

Changing the sign of k if necessary, there are real numbers 0 < a < b
and four points on S! in counterclockwise order where k takes the values
a,b,a,b in succession.

The points 1,4, —1, —: divide St into four equal arcs of length /2. Let
ko be the step function taking values a, b, a, b on these arcs.

Given € > 0, we find a preliminary diffeomorphism h; of S! such that
k o hy is € close in measure to xg. Rescale both to achieve total curvature
27 and they will still be € close in measure for a new small €.
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Apply the winding number argument to

Consider Py = (1,7,—1,—i) € CSy and map D to CS by sending
g3 — g3(Fo). By Corollary 8, this map is a smooth embedding which meets
C'Sy transversally at P, and nowhere else.

By Proposition 5, each loop || = constant in D is sent to a loop in
R? — {0} with winding number +1 about the origin.

More concretely, let ¢(3)ko o g be the rescaling of the curvature step
function which has total curvature 27 and let a(3) : [0,27] — R? be the
corresponding arc-length parametrized curve with this curvature function.
As (3 circles once around the origin, the corresponding loop of error vectors
E(a(f)) has winding number +1 about the origin.
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Transfer this winding number argument to «

Let c(h1,8)k o hy o gg be the rescaling of the curvature function « o
hi o g which has total curvature 27. Let a(hq,3) : [0,27] — R? be the
corresponding arc-length parametrized curve with this curvature function.

Fixing | 3|, we can choose ¢ sufficiently small so that a(hy, 3) is C''-close
to «a(f), the curve corresponding to the step function k3. Then as
circles around the origin, the loop of error vectors FE(a(hq,3)) will also have
winding number £1 about the origin.

Therefore, there exists a diffeomorphism gz with |3'| < |3] so that
E(a(hi,0")) = 0, so the curve a(hy,3’) closes up smoothly. If [3|
sufficiently small, then a(hy,3’) will be as close as we like to the fixed
bicircle with curvature cgkg and thus will be simple.

The simple closed curve «(hi, (") realizes the curvature function
c(hi,B")k o hy o gg. Rescaling realizes the curvature function x o hy o gy
and thus, after reparametrization, it realizes the curvature function =k,
completing the proof of the converse of the Four Vertex Theorem.
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Further Reading

Content and images shamelessly stolen from “The Four Vertex Theorem

and its Converse”, by Dennis DeTurck, Herman Gluck, Daniel Pomerleano
and Shea Vick, available on the arXiv as math.DG/0609268.

Thanks!
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