Visual Functions Generating Conscious Seeing
Frontiers in Psychology
https://doi.org/10.3389/FPSYG.2020.00083Abstract
Visual functions are reviewed that coincide with conscious as opposed to unconscious vision. Four stages of vision are identified, going from the fully invisible, to subjectively invisible, unattended, and clearly visible. It is proposed that feature extraction, categorization, and some aspects of visual inference occur during full and subjective invisibility. Functions related to perceptual organization, such as grouping and figure-ground segregation, occur during inattention as well as full visibility. It is argued that perceptual organization is the function that is central to understanding the transition from unconscious to conscious seeing. It is discussed what this implies for theories of consciousness such as Recurrent Processing Theory,
FAQs
AI
What distinguishes fully unconscious vision from subjectively unconscious vision?
The study identifies that fully unconscious vision occurs when stimuli are below objective visibility thresholds, while subjectively unconscious vision occurs when stimuli surpass these thresholds but are still reported as unseen.
How does attention influence perceptual organization in visual processing?
Attention enhances the strength of visual representations, but does not affect the execution of perceptual organization functions, which are completed during stage 3 of visual processing.
What is the role of metacognition in understanding conscious vision?
Metacognition influences decision-making and awareness in visual tasks, particularly in distinguishing between phases of subjective and objective visibility, yet does not alter the fundamental visual processing stages.
How do visual operations differ in stages of unconscious and conscious perception?
Visual operations like feature extraction and categorization are independent of consciousness, while perceptual organization and grouping require conscious awareness and operate at a higher level.
What are the proposed neural correlates of conscious vision?
The research suggests that neural functions supporting conscious perception include those related to perceptual organization and integration, which are absent during fully unconscious processing stages.
References (56)
- Barbur, J. L., and Spang, K. (2008). Colour constancy and conscious perception of changes of illuminant. Neuropsychologia 46, 853-863. doi: 10.1016/j. neuropsychologia.2007.11.032
- Bayne, T., Seth, A. K., and Massimini, M. (2019). Are there islands of awareness? Trends Neurosci. 43, 6-16. doi: 10.1016/j.tins.2019.11.003
- Block, N. (2005). Two neural correlates of consciousness. Trends Cogn. Sci. 9, 46-52. doi: 10.1016/j.tics.2004.12.006
- Breitmeyer, B. G., Ro, T., and Singhal, N. S. (2004). Unconscious color priming occurs at stimulus-not percept-dependent levels of processing. Psychol. Sci. 15, 198-202. doi: 10.1111/j.0956-7976.2004.01503009.x
- Brown, R., Lau, H., and LeDoux, J. E. (2019). Understanding the higher-order approach to consciousness. Trends Cogn. Sci. 23, 754-768. doi: 10.1016/j. tics.2019.06.009
- Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., and Sergent, C. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn. Sci. 10, 204-211. doi: 10.1016/j.tics.2006.03.007
- Durand, S., Iyer, R., Mizuseki, K., de Vries, S., Mihalas, S., and Reid, R. C. (2016). A comparison of visual response properties in the lateral geniculate nucleus and primary visual cortex of awake and anesthetized mice. J. Neurosci. 36, 12144-12156. doi: 10.1523/JNEUROSCI.1741-16.2016
- Fahrenfort, J. J., Scholte, H. S., and Lamme, V. A. (2007). Masking disrupts reentrant processing in human visual cortex. J. Cogn. Neurosci. 19, 1488-1497. doi: 10.1162/jocn.2007.19.9.1488
- Fahrenfort, J. J., van Leeuwen, J., Olivers, C. N. L., and Hogendoorn, H. (2017). Perceptual integration without conscious access. PNAS. 114, 3744-3749. doi: 10.1073/pnas.1617268114
- Fahrenfort, J. J., Snijders, T. M., Heinen, K., van Gaal, S., Scholte, H. S., and Lamme, V. A. (2012). Neuronal integration in visual cortex elevates face category tuning to conscious face perception. Proc. Natl. Acad. Sci. USA 109, 21504-21509. doi: 10.1073/pnas.1207414110
- Fleming, S. M., and Lau, H. C. (2014). How to measure metacognition. Front. Hum. Neurosci. 8:443. doi: 10.3389/fnhum.2014.00443
- Harris, J. J., Schwarzkopf, D. S., Song, C., Bahrami, B., and Rees, G. (2011). Contextual illusions reveal the limit of unconscious visual processing. Psychol. Sci. 22, 399-405. doi: 10.1177/0956797611399293
- Haun, A., and Tononi, G. (2019). Why does space feel the way it does? Towards a principled account of spatial experience. Entropy 21:1160. doi: 10.3390/ e21121160
- Jachs, B., Blanco, M. S. J., Grantham-Hill, S., and Soto, D. (2015). On the independence of visual awareness and metacognition: a signal detection theoretic analysis. J. Exp. Psychol. Hum. Percept. Perform. 41, 269-276. doi: 10.1037/xhp0000026
- Kastner, S., and Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315-341. doi: 10.1146/annurev. neuro.23.1.315
- Kim, C. Y., and Blake, R. (2005). Psychophysical magic: rendering the visible 'invisible' . Trends Cogn. Sci. 9, 381-388. doi: 10.1016/j.tics.2005.06.012
- Klasen, M., Kreifelts, B., Chen, Y.-H., Seubert, J., and Mathiak, K. (2014). Neural processing of emotion in multimodal settings. Front. Hum. Neurosci. 8:822. doi: 10.3389/fnhum.2014.00822
- Koch, C., Massimini, M., Boly, M., and Tononi, G. (2016). Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307-321. doi: 10.1038/nrn.2016.22
- Lamme, V. A. (1995). The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15, 1605-1615. doi: 10.1523/ JNEUROSCI.15-02-01605.1995
- Lamme, V. A. (2003). Why visual attention and awareness are different. Trends Cogn. Sci. 7, 12-18. doi: 10.1016/S1364-6613(02)00013-X Lamme, V. A. (2004). Separate neural definitions of visual consciousness and visual attention; a case for phenomenal awareness. Neural Netw. 17, 861-872. doi: 10.1016/j.neunet.2004.02.005
- Lamme, V. A. F. (2004). "Beyond the classical receptive field: contextual modulation of V1 responses" in The visual neurosciences. eds. L. M. Chalupa and J. S. Werner (Cambridge, MA: MIT Press), 720-732.
- Lamme, V. A. F. (2009). Re-entrant processing. The Oxford companion to consciousness, 556-561.
- Lamme, V. A. (2010). How neuroscience will change our view on consciousness. Cogn. Neurosci. 1, 204-220. doi: 10.1080/17588921003731586
- Lamme, V. (2015). "The crack of dawn: perceptual functions and neural mechanisms that mark the transition from unconscious processing to conscious vision" in Open MIND: 22(T). eds. T. Metzinger and J. M. Windt (Frankfurt am Main: MIND Group), doi: 10.15502/9783958570092
- Lamme, V. A. F. (2018). Challenges for theories of consciousness: seeing or knowing, the missing ingredient and how to deal with panpsychism. Philos. Trans. R. Soc. B 373:20170344. doi: 10.1098/rstb.2017.0344
- Lamme, V. A., Rodriguez-Rodriguez, V., and Spekreijse, H. (1999). Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cereb. Cortex 9, 406-413. doi: 10.1093/ cercor/9.4.406
- Lamme, V. A., and Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571-579. doi: 10.1016/S0166-2236(00)01657-X
- Lamme, V. A., and Spekreijse, H. (2000). Modulations of primary visual cortex activity representing attentive and conscious scene perception. Front. Biosci. 5, D232-D243. doi: 10.2741/lamme
- Lamme, V. A., Super, H., and Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8, 529-535. doi: 10.1016/S0959-4388(98)80042-1
- Lamme, V. A., Zipser, K., and Spekreijse, H. (1998). Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proc. Natl. Acad. Sci. USA 95, 3263-3268.
- Lamme, V. A. F., Zipser, K., and Spekreijse, H. (2001). Masking interrupts figure-ground signals in V1. J. Vis. 1:32. doi: 10.1162/089892902320474490
- Landman, R., Spekreijse, H., and Lamme, V. A. (2003). Set size effects in the macaque striate cortex. J. Cogn. Neurosci. 15, 873-882. doi: 10.1162/ 089892903322370799
- Marcel, A. J. (1998). Blindsight and shape perception: deficit of visual consciousness or of visual function? Brain 121, 1565-1588. doi: 10.1093/ brain/121.8.1565
- Marois, R., Yi, D.-J., and Chun, M. M. (2004). The neural fate of consciously perceived and missed events in the attentional blink. Neuron 41, 465-472. doi: 10.1016/S0896-6273(04)00012-1
- McAdams, C. J., and Maunsell, J. H. R. (1999). Effects of attention on orientation- tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431-441. doi: 10.1523/JNEUROSCI.19-01-00431.1999
- Meuwese, J. D., van Loon, A. M., Scholte, H. S., Lirk, P. B., Vulink, N. C., Hollmann, M. W., et al. (2013). NMDA receptor antagonist ketamine impairs feature integration in visual perception. PLoS One 8:e79326. doi: 10.1371/ journal.pone.0079326
- Naccache, L. (2018). Why and how access consciousness can account for phenomenal consciousness. Philos. Trans. R. Soc. Lond. B Biol. Sci 373:20170357. doi: 10.1098/rstb.2017.0357
- Nakayama, K., and Shimojo, S. (1992). Experiencing and perceiving visual surfaces. Science 257, 1357-1363. doi: 10.1126/science.1529336
- Overgaard, M., and Sandberg, K. (2012). Kinds of access: different methods for report reveal different kinds of metacognitive access. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 367, 1287-1296. doi: 10.1098/rstb.2011.0425
- Owen, M., and Guta, M. P. (2019). Physically sufficient neural mechanisms of consciousness. Front. Syst. Neurosci. 13:24. doi: 10.3389/fnsys.2019.00024
- Park, H.-D., and Tallon-Baudry, C. (2014). The neural subjective frame: from bodily signals to perceptual consciousness. Philos. Trans. R. Soc. B 369:20130208. doi: 10.1098/rstb.2013.0208
- Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behav. Brain Sci. 22, 341-365; discussion 366-423. doi: 10.1017/S0140525X99002022
- Ramsøy, T. Z., and Overgaard, M. (2004). Introspection and subliminal perception. Phenomenol. Cogn. Sci. 3, 1-23. doi: 10.1023/B:PHEN.0000041900.30172.e8
- Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci. 29, 203-227. doi: 10.1146/annurev.neuro.29. 051605.112939
- Rossi, A. F., Rittenhouse, C. D., and Paradiso, M. A. (1996). The representation of brightness in primary visual cortex. Science 273, 1104-1107. doi: 10.1126/ science.273.5278.1104 February 2020 | Volume 11 | Article 83
- Scholte, H. S., Spekreijse, H., and Lamme, V. A. F. (2001). Neural correlates of global scene segmentation are present during inattentional blindness. J. Vis. 1:346. doi: 10.1167/1.3.346
- Seth, A. (2009). Explanatory correlates of consciousness: theoretical and computational challenges. Cogn. Comput. 1, 50-63. doi: 10.1007/s12559-009-9007-x
- Shapley, R., and Hawken, M. J. (2011). Color in the cortex: single-and double- opponent cells. Vis. Res. 51, 701-717. doi: 10.1016/j.visres.2011.02.012
- Stoerig, P., and Cowey, A. (1989). Wavelength sensitivity in blindsight. Nature 342, 916-918. doi: 10.1038/342916a0
- Supèr, H., Spekreijse, H., and Lamme, V. A. F. (2001). Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304-310. doi: 10.1038/85170
- Tononi, G., Boly, M., Massimini, M., and Koch, C. (2016). Integrated information theory: from consciousness to its physical substrate. Nat. Rev. Neurosci. 17, 450-461. doi: 10.1038/nrn.2016.44
- Tsuchiya, N., Wilke, M., Frässle, S., and Lamme, V. A. (2015). No-report paradigms: extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19, 757-770. doi: 10.1016/j.tics.2015.10.002
- Vandenbroucke, A. R., Fahrenfort, J. J., Sligte, I. G., and Lamme, V. A. (2014). Seeing without knowing: neural signatures of perceptual inference in the absence of report. J. Cogn. Neurosci. 26, 955-969. doi: 10.1162/jocn_a_00530
- Wang, L., Weng, X., and He, S. (2012). Perceptual grouping without awareness: superiority of Kanizsa triangle in breaking interocular suppression. PLoS One 7:e40106. doi: 10.1371/journal.pone.0053383
- Wierzchoń, M., Paulewicz, B., Asanowicz, D., Timmermans, B., and Cleeremans, A. (2014). Different subjective awareness measures demonstrate the influence of visual identification on perceptual awareness ratings. Conscious. Cogn. 27, 109-120. doi: 10.1016/j.concog.2014.04.009
- Zipser, K., Lamme, V. A., and Schiller, P. H. (1996). Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376-7389. doi: 10.1523/ JNEUROSCI.16-22-07376.1996