Academia.eduAcademia.edu

Outline

Hybrid Imaging: Instrumentation and Data Processing

Frontiers in Physics

https://doi.org/10.3389/FPHY.2018.00047

Abstract

State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing "anato-metabolic" information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.

References (341)

  1. Friedland GW, Thurber BD. The birth of CT. AJR Am J Roentgenol. (1996) 167:1365-1370. doi: 10.2214/ajr.167.6.8956560
  2. Rinck PA. Magnetic Resonance in Medicine: The Basic Textbook of the European Magnetic Resonance Forum. 12th revised and enlarged edition. Hoboken, NJ: Blackwell Scientific Publications (2018). Available online at: www.magnetic-resonance.org
  3. Moser E, Laistler E, Schmitt F, Kontaxis G. Ultra-high field NMR and MRI- the role of magnet technology to increase sensitivity and specificity. Front Phys. (2017) 5:33. doi: 10.3389/fphy.2017.00033
  4. Beyer T, Freudenberg LS, Townsend DW, Czernin J. The future of hybrid imaging-part 1: hybrid imaging technologies and SPECT/CT. Insights Imaging (2011) 2:161-9. doi: 10.1007/s13244-010-0063-2
  5. Beyer T, Townsend DW, Czernin J, Freudenberg LS. The future of hybrid imaging-part 2: PET/CT. Insights Imaging. (2011) 2:225-34. doi: 10.1007/s13244-011-0069-4
  6. Beyer T, Freundenberg LS, Czernin J, Townsend DW. The future of hybrid imaging-part 3: Pet/mr, small-animal imaging and beyond. Insights Imaging (2011) 3:189. doi: 10.1007/s13244-011-0136-x
  7. Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. (2006) 51:R99-115. doi: 10.1088/0031-9155/51/13/R07
  8. Nutt R. The history of positron emission tomography. Mol Imaging Biol. (2002) 4:11-26. doi: 10.1016/S1095-0397(00)00051-0
  9. Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. "Anatometabolic" tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med. (1993) 34:1190-7.
  10. Hutton BF, Braun M. Software for image registration: algorithms, accuracy, efficacy. Semin Nucl Med. (2003) 33:180-92. doi: 10.1053/snuc.2003.127309
  11. Slomka PJ, Baum RP. Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging (2009) 36:44-55. doi: 10.1007/s00259-008-0941-8.
  12. Blankespoor SC, Wu X, Kalki K, Brown JK, Cann CE, Hasegawa BH. Attenuation correction of SPECT using X-ray CT on an emission- transmission CT system: myocardial perfusion assessment. In: IEEE Nuclear Science Symposium and Medical Imaging Conference Record. Vol 2. IEEE (1995). p. 1126-30.
  13. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R. A combined PET/CT scanner for clinical oncology. J Nucl Med. (2000) 41:1369-79.
  14. Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med. (1992) 33:1881-7.
  15. LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci. (1994) 41:2793-9. doi: 10.1109/23.340649
  16. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol. (2008) 53:R1-39. doi: 10.1088/0031-9155/53/4/R01
  17. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. (2003) 33:166-79. doi: 10.1053/snuc.2003.127307
  18. Ritt P, Sanders J, Kuwert T. SPECT/CT technology. Clin Transl Imaging (2014) 2:445-57. doi: 10.1007/s40336-014-0086-7
  19. Rausch I, Cal-González J, Dapra D, Gallowitsch HJ, Lind P, Beyer T. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. (2015) 2:26. doi: 10.1186/s40658-015-0132-1
  20. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. (2011) 56:2375-89. doi: 10.1088/0031-9155/56/8/004
  21. Kolthammer JA, Su K-H, Grover A, Narayanan M, Jordan DW, Muzic RF. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys Med Biol. (2014) 59:3843-59. doi: 10.1088/0031-9155/59/14/3843
  22. Miller M, Zhang J, Binzel K, Griesmer J, Laurence, T, Narayanan M, et al. Characterization of the vereos digital photon counting PET system. J Nucl Med. (2015) 56(Suppl. 3):434.
  23. Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET/CT Discovery-690. Med Phys. (2011) 38:5394. doi: 10.1118/1.3635220
  24. Reynés-Llompart G, Gámez-Cenzano C, Romero-Zayas I, Rodríguez-Bel L, Vercher-Conejero JL, Martí-Climent JM. Performance characteristics of the whole-body discovery IQ PET/CT system. J Nucl Med. (2017) 58:1155-61. doi: 10.2967/jnumed.116.185561
  25. Kaneta T, Ogawa M, Motomura N, Iizuka H, Arisawa T, Hino-Shishikura A. Initial evaluation of the Celesteion large-bore PET/CT scanner in accordance with the NEMA NU2-2012 standard and the Japanese guideline for oncology FDG PET/CT data acquisition protocol version 2.0. EJNMMI Res. (2017) 7:83. doi: 10.1186/s13550-017-0331-y
  26. Montgomery DW, Amira A, Zaidi H. Performance evaluation of a new high-sensitivity TOF clinical PET/CT system. J Nucl Med. (2015) 56:433-3.
  27. Xu B, Liu C, Dong Y, Tang R, Liu Y, Yang H, et al. Performance evaluation of a high-resolution TOF clinical PET/CT. J Nucl Med. (2016) 57:202.
  28. Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG. Performance measurements of the siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. (2011) 52:1914-22. doi: 10.2967/jnumed.111.0 92726
  29. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. (2011) 56:3091-106. doi: 10.1088/0031-9155/56/ 10/013
  30. Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS. NEMA NU 2-2012 performance studies for the SiPM-based ToF- PET component of the GE SIGNA PET/MR system. Med Phys. (2016) 43:2334-43. doi: 10.1118/1.4945416
  31. Mirshanov DM. Transmission-Emission Computer Tomograph (1987). USSR Patent No. 621.386:616-07320.01.87-SU-181935.
  32. Seret A, Nguyen D, Bernard C. Quantitative capabilities of four state-of-the-art SPECT-CT cameras. EJNMMI Res. (2012) 2:45. doi: 10.1186/2191-219X-2-45
  33. Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ, Herrmann K, et al. SPECT/CT. J Nucl Med. (2008) 49:1305-19. doi: 10.2967/jnumed.107.050195
  34. Anger HO. Scintillation camera. Rev Sci Instrum. (1958) 29:27-33. doi: 10.1063/1.1715998
  35. Slomka PJ, Berman DS, Germano G. New cardiac cameras: single- photon emission CT and PET. Semin Nucl Med. (2014) 44:232-51. doi: 10.1053/j.semnuclmed.2014.04.003
  36. Suzuki A, Takeuchi W, Ishitsu T, Tsuchiya K, Morimoto Y, Ueno Y. High-sensitivity brain SPECT system using cadmium telluride (CdTe) semiconductor detector and 4-pixel matched collimator. Phys Med Biol. (2013) 58:7715-31. doi: 10.1088/0031-9155/58/2 1/7715
  37. Tan J-W, Cai L, Meng L-J. A prototype of the MRI-compatible ultra-high resolution SPECT for in vivo mice brain imaging. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE (2009). p. 2800-5.
  38. Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging (2010) 37:1959-85. doi: 10.1007/s00259-010-1390-8
  39. Bhargava P, He G, Samarghandi A, Delpassand ES. Pictorial review of SPECT/CT imaging applications in clinical nuclear medicine. Am J Nucl Med Mol Imaging (2012) 2:221-31.
  40. Ahmadzadehfar H, Biersack H, (eds.). Clinical Applications of SPECT-CT. Berlin; Heidelberg: Springer-Verlag (2014).
  41. Ljungberg M, Pretorius PH. SPECT/CT: an update on technological developments and clinical applications. Br J Radiol. (2018) 91:20160402. doi: 10.1259/bjr.20160402
  42. Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med. (2003) 33:193-204. doi: 10.1053/snuc.2003.127314
  43. Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med. (2007) 48(Suppl 1):78S-88S.
  44. Walrand S, Hesse M, Jamar F. Update on novel trends in PET/CT technology and its clinical applications. Br J Radiol. (2018) 91:20160534. doi: 10.1259/bjr.20160534
  45. Herzog H, Lerche C. Advances in clinical PET/MRI instrumentation. PET Clin. (2016) 11:95-103. doi: 10.1016/j.cpet.2015.09.001
  46. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. (2015) 60:R115-54. doi: 10.1088/0031-9155/60/4/R115
  47. Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems. Med Phys. (2011) 38:5667-89. doi: 10.1118/1.3633909
  48. Cabello J, Ziegler SI. Advances in PET/MR instrumentation and image reconstruction. Br J Radiol. (2018) 91:20160363. doi: 10.1259/bjr.20160363
  49. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. (2006) 47:639-47.
  50. Spanoudaki VC, Mann AB, Otte AN, Konorov I, Torres-Espallardo I, Paul S, et al. Use of single photon counting detector arrays in combined PET/MR: characterization of LYSO-SiPM detector modules and comparison with a LSO-APD detector. J Instrum. (2007) 2:P12002. doi: 10.1088/1748-0221/2/12/P12002
  51. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. (2008) 14:459-65. doi: 10.1038/nm1700
  52. Spanoudaki VC, Levin CS. Photo-detectors for time of flight positron emission tomography (ToF-PET). Sensors (2010) 10:10484-505. doi: 10.3390/s101110484
  53. de Jong M, Essers J, van Weerden WM. Imaging preclinical tumour models: improving translational power. Nat Rev Cancer. (2014) 14:481-93. doi: 10.1038/nrc3751
  54. Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. (2005) 50:R45-61. doi: 10.1088/0031-9155/50/22/R01
  55. Lee T-S, Rittenbach A, Fernandez CG, Lopez-Longas J, Arco JM, Tsui BMW. Initial evaluation of a state-of-the-art commercial preclinical PET/CT scanner. In: 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). Strasbourg: IEEE (2016). p. 1-4.
  56. van der Have F, Vastenhouw B, Ramakers RM, Branderhorst W, Krah JO, Ji C. U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med. (2009) 50:599-605. doi: 10.2967/jnumed.108.056606
  57. Goorden MC, van der Have F, Kreuger R, Ramakers RM, Vastenhouw B, Burbach JP. VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J Nucl Med. (2013) 54:306-12. doi: 10.2967/jnumed.112.109538
  58. Walker MD, Goorden MC, Dinelle K, Ramakers RM, Blinder S, Shirmohammad M. Performance assessment of a preclinical PET scanner with pinhole collimation by comparison to a coincidence- based small-animal PET scanner. J Nucl Med. (2014) 55:1368-74. doi: 10.2967/jnumed.113.136663
  59. Magota K, Kubo N, Kuge Y, Nishijima K-I, Zhao S, Tamaki N. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging. (2011) 38:742-752. doi: 10.1007/s00259-010-1683-y
  60. Larsson Åkerman L. A Technical Validation of The PET/SPECT/CT (Triumph) Scanner. (2011). Available online at: https://uu.diva-portal.org/ smash/get/diva2:407708/FULLTEXT01.pdf.
  61. Kuntner C, Stout D. Quantitative preclinical PET imaging: opportunities and challenges. Front Phys. (2014) 2:12. doi: 10.3389/fphy.2014.00012
  62. Binderup T, El-Ali H, Ambrosini V, Skovgaard D, Jensen MM, Li F, et al. Molecular imaging with small animal PET/CT. Curr Med Imaging Rev. (2011) 7:234-7. doi: 10.2174/157340511796411221
  63. Goertzen AL, Bao Q, Bergeron M, Blankemeyer E, Blinder S, Cañadas M. NEMA NU 4-2008 comparison of preclinical pet imaging systems. J Nucl Med. (2012) 53:1300-9. doi: 10.2967/jnumed.111.099382
  64. Khalil MM, Tremoleda JL, Bayomy TB, Gsell W. Molecular SPECT imaging: an overview. Int J Mol Imaging (2011) 2011:1-15. doi: 10.1155/2011/796025
  65. Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging (2009) 36:56-68. doi: 10.1007/s00259-009-1078-0
  66. Huang SC, Hoffman EJ, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr. (1979) 3:804-14. doi: 10.1097/00004728-197903060-00018
  67. Fletcher JW, Kinahan PE. PET/CT Standardized uptake values (SUVs) in clinical practice and assessing response to therapy. NIH Public Access. (2010) 31:496-505. doi: 10.1053/j.sult.2010.10.001.PET/CT
  68. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. (2009) 50(Suppl. 1):122S-50S. doi: 10.2967/jnumed.108.057307
  69. Yankeelov TE, Abramson RG, Quarles CC. Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol. (2014) 11:670-80. doi: 10.1038/nrclinonc.2014.134
  70. Kotasidis FA, Tsoumpas C, Rahmim A. Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Transl Imaging (2014) 2:219-37. doi: 10.1007/s40336-014-0069-8
  71. Lammertsma AA. Forward to the past: the case for quantitative PET imaging. J Nucl Med. (2017) 58:1019-24. doi: 10.2967/jnumed.116.188029
  72. Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med. (2013) 54:83-9. doi: 10.2967/jnumed.112.111476
  73. Wernick MN, Aarsvold JN. Emission Tomography : The Fundamentals of PET and SPECT. Elsevier Academic Press (2004). doi: 10.1016/B978-0-12-744482-6.50030-2
  74. Casey ME, Nutt R. A Multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci. (1986) 33:460-3. doi: 10.1109/TNS.1986.4337143
  75. Joung J, Miyaoka RS, Lewellen TK. cMiCE:a high resolution animal PET using continuous LSO with a statistics based positioning scheme. In: IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310). IEEE (2001). p. 1137-41.
  76. Carles M, Lerche CW, Sánchez F, Mora F, Benlloch JM. Position correction with depth of interaction information for a small animal PET system. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. (2011) 648:S176-80. doi: 10.1016/j.nima.2010.11.192
  77. Lewellen TK. Recent developments in PET detector technology. Phys Med Biol. (2008) 53:R287-317. doi: 10.1088/0031-9155/53/17/R01
  78. Madsen MT. Recent advances in SPECT imaging. J Nucl Med. (2007) 48:661-73. doi: 10.2967/jnumed.106.032680
  79. Lecomte R. Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging (2009) 36:69-85. doi: 10.1007/s00259-008-1054-0
  80. Peterson TE, Furenlid LR. SPECT detectors: the Anger Camera and beyond. Phys Med Biol. (2011) 56:R145-82. doi: 10.1088/0031-9155/56/17/R01
  81. Shefer E, Altman A, Behling R, Goshen R, Gregorian L, Roterman Y, et al. State of the art of CT detectors and sources: a literature review. Curr Radiol Rep. (2013) 1:76-91. doi: 10.1007/s40134-012-0006-4
  82. Lecoq P. Development of new scintillators for medical applications. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. (2016) 809:130-9. doi: 10.1016/j.nima.2015.08.041
  83. Vaquero JJ, Sánchez JJ, Udías JM, Cal-González J, Desco M. MRI compatibility of position-sensitive photomultiplier depth-of-interaction PET detectors modules for in-line multimodality preclinical studies. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. (2013) 702:83-7. doi: 10.1016/j.nima.2012.08.046
  84. Degenhardt C, Prescher G, Frach T, Thon A, de Gruyter R, Schmitz A, et al. The digital silicon photomultiplier -a novel sensor for the detection of scintillation light. In: IEEE Nuclear Science Symposium Conference Record. Orlando, FL (2009). p. 2383-6.
  85. Frach T, Prescher G, Degenhardt C, De Gruyter R, Schmitz A, Ballizany R. The digital silicon photomultiplier -principle of operation and intrinsic detector performance. IEEE Nucl Sci Symp Conf Rec. (2009). p.1959-65.
  86. Degenhardt C, Zwaans B, Frach T, de Gruyter R. Arrays of digital Silicon Photomultipliers-intrinsic performance and application to scintillator readout. In: IEEE Nuclear Science Symposuim and Medical Imaging Conference. Knowville, TN: IEEE (2010). p. 1954-6.
  87. Düppenbecker PM, Weissler B, Gebhardt P, Schug D, Wehner J, Marsden PK. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI. Biomed Phys Eng Express. (2016) 2:15010. doi: 10.1088/2057-1976/2/1/015010
  88. Chmeissani M, Kolstein M, Gabriel Macias-Montero J, Puigdengoles C, García J, Prats X. First results of a highly granulated 3D CdTe detector module for PET. Phys Med Biol. (2018) 63:25032. doi: 10.1088/1361-6560/aaa44c
  89. Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging (2011) 38:1147-57. doi: 10.1007/s00259-010-1711-y
  90. Surti S, Karp JS. Advances in time-of-flight PET. Phys Med. (2016) 32:12-22. doi: 10.1016/j.ejmp.2015.12.007
  91. Vandenberghe S, Mikhaylova E, D'Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI Phys. (2016) 3:3. doi: 10.1186/s40658-016-0138-3
  92. Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Trans Radiat Plasma Med Sci. (2017) 1:473-85. doi: 10.1109/TRPMS.2017.2756674
  93. Gundacker S, Acerbi F, Auffray E, Ferri A, Gola A, Nemallapudi MV, et al. State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J Instrum. (2016) 11:P08008. doi: 10.1088/1748-0221/11/08/P08008
  94. Nemallapudi MV, Gundacker S, Lecoq P, Auffray E, Ferri A, Gola A. Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca. Phys Med Biol. (2015) 60:4635-49. doi: 10.1088/0031-9155/60/12/4635
  95. Dahlbom M, Yu D-C, Cherry SR, Chatziioannou A, Hoffman EJ. Methods for improving image quality in whole body PET scanning. IEEE Trans Nucl Sci. (1992) 39:1079-83. doi: 10.1109/23.159763
  96. Dahlbom M, Reed J, Young J. Implementation of true continuous bed motion in 2-D and 3-D whole-body PET scanning. IEEE Trans Nucl Sci. (2001) 48:1465-9. doi: 10.1109/23.958381
  97. Brasse D, Newport D, Carney JP, Yap J, Reynolds C, Reed J, et al. Continuous bed motion acquisition on a whole body combined PET/CT system. In: EEE Nuclear Science Symposium Conference Record. Vol 2. Norfolk, VA: IEEE (2002). p. 951-5.
  98. Townsend DW, Reed J, Newport DF, Carney JPJ, Tolbert SH, Newby D et al. Continuous bed motion acquisition for an LSO PET/CT scanner. In: IEEE Symposium Conference Record Nuclear Science. Vol 4. Rome: IEEE (2004). p. 2383-7.
  99. Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol. (2015) 60:8643-73. doi: 10.1088/0031-9155/60/22/8643
  100. Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci. (2002) 49:104. doi: 10.1109/TNS.2002.998689
  101. Majewski S, Proffitt J, Brefczynski-Lewis J, Stolin A, Weisenberger AG, Xi W, et al. HelmetPET: a silicon photomultiplier based wearable brain imager. In: IEEE Nuclear Science Symposium Conference Record. Valencia (2011). p. 4030-4.
  102. Yamamoto S, Honda M, Oohashi T, Shimizu K, Senda M. Development of a brain PET system, PET-Hat: a wearable PET system for brain research. IEEE Trans Nucl Sci. (2011) 58(3 Pt 1):668-73. doi: 10.1109/TNS.2011.2105502
  103. Tashima H, Yamaya T. Proposed helmet PET geometries with add- on detectors for high sensitivity brain imaging. Phys Med Biol. (2016) 61:7205-20. doi: 10.1088/0031-9155/61/19/7205
  104. Kolb A, Wehrl HF, Hofmann M, Judenhofer MS, Eriksson L, Ladebeck R. Technical performance evaluation of a human brain PET/MRI system. Eur Radiol. (2012) 22:1776-88. doi: 10.1007/s00330-012-2415-4
  105. González AJ, Majewski S, Sánchez F, Aussenhofer S, Aguilar A, Conde P, et al. The MINDView brain PET detector, feasibility study based on SiPM arrays. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. (2016) 818:82-90. doi: 10.1016/j.nima.2016.02.046
  106. Ravindranath B, Junnarkar SS, Purschke ML, Maramraju S, Hong X, Tomasi D, et al. Results from prototype II of the BNL simultaneous PET-MRI dedicated breast scanner. In: IEEE Nuclear Science Symposium Conference Record. Orlando, FL (2009). p. 3315-7. doi: 10.1109/NSSMIC.2009.5401742
  107. Varela J. EndoTOFPET-US: multi-modal endoscope for ultrasound and time of flight PET. In: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014. Seattle, WA (2016).
  108. Crosetto DB. A modular VME or IBM PC based data acquisition system for multi-modality PET/CT scanners of different sizes and detector types. Nucl Sci Symp Conf Rec 2000 IEEE. (2000) 2:12/78-12/97. doi: 10.1109/NSSMIC.2000.949946
  109. Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. (2017) 9:eaaf6169. doi: 10.1126/scitranslmed.aaf6169
  110. Cherry SR, Jones T, Karp JS, Qi J, Moses W, Badawi R. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. (2018) 59:3-12. doi: 10.2967/jnumed.116. 184028
  111. Eriksson L, Townsend D, Conti M, Eriksson M, Rothfuss H, Schmand M, et al. An investigation of sensitivity limits in PET scanners. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. (2007) 580:836-42. doi: 10.1016/j.nima.2007.06.112
  112. Zhang X, Zhou J, Cherry SR, Badawi RD, Qi J. Quantitative image reconstruction for total-body PET imaging using the 2- meter long EXPLORER scanner. Phys Med Biol. (2017) 62:2465-85. doi: 10.1088/1361-6560/aa5e46
  113. Karakatsanis NA, Garibotto V, Rager O, Zaidi H. Continuous bed motion Vs. step-and-shoot acquisition on clinical whole-body dynamic and parametric PET imaging. In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015. San Diego, CA (2016).
  114. Karakatsanis NA, Lodge M A, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol. (2013) 58:7391-418. doi: 10.1088/0031-9155/58/20/7391
  115. Randall I. Total Body PET Scanner Targets Paediatric Patients. MedicalPhysicsWeb. Available online at http://medicalphysicsweb.org/ cws/article/research/69657 (Accessed November 14, 2017).
  116. Martins PM, Crespo P, Couceiro M, Ferreira NC, Marques RF, Seco J, et al. Fast full-body reconstruction for a functional human RPC-PET imaging system using list-mode simulated data and its applicability to radiation oncology and radiology. arXiv. 2017:1706.07075.
  117. Moser E, Stahlberg F, Ladd ME, Trattnig S. 7-T MR-from research to clinical applications? NMR Biomed. (2012) 25:695-716. doi: 10.1002/nbm.1794
  118. Moser E, Stadlbauer A, Windischberger C, Quick HH, Ladd ME. Magnetic resonance imaging methodology. Eur J Nucl Med Mol Imaging (2009) 36:30-41. doi: 10.1007/s00259-008-0938-3
  119. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging (2001) 13:534-46. doi: 10.1002/jmri.1076
  120. Sander CY, Keil B, Chonde DB, Rosen BR, Catana C, Wald LL. A 31-channel MR brain array coil compatible with positron emission tomography. Magn Reson Med. (2015) 73:2363-75. doi: 10.1002/mrm.25335
  121. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. (1999) 42:952-62.
  122. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. (2002) 47:1202-10. doi: 10.1002/mrm.10171
  123. Larkman DJ, Nunes RG. Parallel magnetic resonance imaging. Phys Med Biol. (2007) 52:R15-55. doi: 10.1088/0031-9155/52/7/R01
  124. Alessio A, Kinahan P. PET image reconstruction. Nucl Med. (2006) 1:1-22. doi:10.1088/0031-9155/54/12/007.Iterative
  125. Hsieh J, Nett B, Yu Z, Sauer K, Thibault J-B, Bouman CA. Recent advances in CT image reconstruction. Curr Radiol Rep. (2013) 1:39-51. doi: 10.1007/s40134-012-0003-7
  126. Geyer LL, Schoepf UJ, Meinel FG, Nance JW, Bastarrika G, Leipsic JA. State of the art: iterative CT reconstruction techniques. Radiology. (2015) 276:339-57. doi: 10.1148/radiol.2015132766
  127. Herman GT. Fundamentals of Computerized Tomography. London: Springer London (2009).
  128. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A. (1984) 1:612-9. doi: 10.1364/JOSAA.1.000612
  129. Katsevich A. A general scheme for constructing inversion algorithms for cone beam CT. Int J Math Math Sci. (2003) 2003:1305-21. doi: 10.1155/S0161171203209315
  130. Zhuang T, Leng S, Nett BE, Chen G-H. Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data. Phys Med Biol. (2004) 49:5489-503. doi: 10.1088/0031-9155/49/24/007
  131. Pack JD, Noo F, Clackdoyle R. Cone-beam reconstruction using the backprojection of locally filtered projections. IEEE Trans Med Imaging (2005) 24:70-85. doi: 10.1109/TMI.2004.837794
  132. Grimmer R, Oelhafen M, Elstrøm U, Kachelrieß M. Cone-beam CT image reconstruction with extended z range. Med Phys. (2009) 36:3363-70. doi: 10.1118/1.3148560
  133. Katsevich A. Theoretically exact filtered backprojection-type inversion algorithm for spiral CT. SIAM J Appl Math. (2002) 62:2012-26. doi: 10.1137/S0036139901387186
  134. Tang X, Hsieh J, Nilsen RA, Dutta S, Samsonov D, Hagiwara A. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning. Phys Med Biol. (2006) 51:855-74. doi: 10.1088/0031-9155/51/4/007
  135. Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Medica. (2012) 28:94-108. doi: 10.1016/j.ejmp.2012. 01.003
  136. Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol. (1970) 29:471-81. doi: 10.1016/0022-5193(70)90109-8
  137. Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason Imaging (1984) 6:81-94. doi: 10.1177/016173468400600107
  138. Gilbert P. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol. (1972) 36:105-17. doi: 10.1016/0022-5193(72)90180-4
  139. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging (1982) 1:113-22. doi: 10.1109/TMI.1982.4307558
  140. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging (1994) 13:601-9. doi: 10.1109/42.363108
  141. Thibault J-B, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. (2007) 34:4526-44. doi: 10.1118/1.2789499
  142. Xu F, Xu W, Jones M, Keszthelyi B, Sedat J, Agard D. On the efficiency of iterative ordered subset reconstruction algorithms for acceleration on GPUs. Comput Methods Programs Biomed. (2010) 98:261-70. doi: 10.1016/j.cmpb.2009.09.003
  143. Liang Z-P, Lauterbur PC. Principles of Magnetic Resonance Imaging : A Signal Processing Perspective. New York, NY: SPIE Optical Engineering Press (2000).
  144. Zaidi H. Quantitative Analysis in Nuclear Medicine Imaging. Basel: Springer (2006).
  145. Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol. (2008) 53:3099-12. doi: 10.1088/0031-9155/53/12/002
  146. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. (1998) 25:2046-53. doi: 10.1118/1.598392
  147. Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci. (2000) 47:1587-94. doi: 10.1109/23.873020
  148. Watson CC, Casey ME, Michel C, Bendriem B. Advances in scatter correction for 3D PET/CT. IEEE Symp Conf Rec Nucl Sci 2004. (2004) 5:3-7. doi: 10.1109/NSSMIC.2004.1466317
  149. Patton JA, Turkington TG. SPECT/CT physical principles and attenuation correction. J Nucl Med Technol. (2008) 36:1-10. doi: 10.2967/jnmt.107.046839
  150. Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med. (1984) 25:893-900.
  151. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging. (1991) 10:408-12. doi: 10.1109/42. 97591
  152. Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging (2004) 31:761-82. doi: 10.1007/ s00259-004-1495-z
  153. Peterson M, Gustafsson J, Ljungberg M. Monte Carlo-based quantitative pinhole SPECT reconstruction using a ray-tracing back-projector. EJNMMI Phys. (2017) 4:32. doi: 10.1186/s40658-017-0198-z
  154. Elschot M, Lam MGEH, van den Bosch MAAJ, Viergever MA, de Jong HWAM. Quantitative Monte Carlo-based 90Y SPECT reconstruction. J Nucl Med. (2013) 54:1557-63. doi: 10.2967/jnumed.112.119131
  155. Bailey DL, Townsend DW. Positron Emission Tomography: Basic Sciences. Basel: Springer (2005).
  156. Badawi RD, Marsden PK. Developments in component-based normalization for 3D PET. Phys Med Biol. (1999) 44:571-94. doi: 10.1088/0031-9155/44/2/020
  157. Guobao W, Jinyi Q. Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization. IEEE Trans Med Imaging. (2012) 31:2194-204. doi: 10.1109/TMI.2012.2211378
  158. Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging (1990) 9:84-93. doi: 10.1109/42.52985
  159. Alessio AM, Kinahan PE. Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors. Med Phys. (2006) 33:4095-103. doi: 10.1118/1.2358198
  160. Chun SY. The use of anatomical information for molecular image reconstruction algorithms: attenuation/scatter correction, motion compensation, and noise reduction. Nucl Med Mol Imaging (2010). (2016) 50:13-23. doi: 10.1007/s13139-016-0399-8
  161. Bai B, Li Q, Leahy RM. Magnetic resonance-guided positron emission tomography image reconstruction. Semin Nucl Med. (2013) 43:30-44. doi: 10.1053/j.semnuclmed.2012.08.006
  162. Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans Med Imaging. (1989) 8:194-202. doi: 10.1109/42.24868
  163. Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. Minimum cross-entropy reconstruction of PET images using prior anatomical information. Phys Med Biol. (1996) 41:2497-517. doi: 10.1088/0031-9155/41/11/018
  164. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. (2007) 48:932-45. doi: 10.2967/jnumed.106.035774
  165. Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in PET. PET Clin. (2007) 2:235-49. doi: 10.1016/j.cpet.2007.10.005
  166. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. (2012) 57:R119-59. doi: 10.1088/0031-9155/57/21/R119
  167. Erlandsson K, Dickson J, Arridge S, Atkinson D, Ourselin S, Hutton BF. MR imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. (2015) 11:161-77. doi: 10.1016/j.cpet.2015.09.002
  168. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. (1979) 3:299-308. doi: 10.1097/00004728-197906000-00001
  169. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. (1998) 39:904-11.
  170. Müller-Gärtner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. (1992) 12:571-83. doi: 10.1038/jcbfm.1992.81
  171. Teo BK, Seo Y, Bacharach SL, Carrasquillo JA, Libutti SK, Shukla H. Partial- volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med. (2007) 48:802-10. doi: 10.2967/jnumed.106.035576
  172. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S. The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease. Eur J Nucl Med Mol Imaging. (2011) 38:1104-19.
  173. Moore SC, Southekal S, Park MA, McQuaid SJ, Kijewski MF, Muller SP. Improved regional activity quantitation in nuclear medicine using a new approach to correct for tissue partial volume and spillover effects. IEEE Trans Med Imaging. (2012) 31:405-16. doi: 10.1109/TMI.2011.2169981
  174. Southekal S, McQuaid SJ, Kijewski MF, Moore SC. Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest. Phys Med Biol. (2012) 57:685-701. doi: 10.1088/0031-9155/57/3/685
  175. Cal-González J, Moore SC, Park MA, Herraiz JL, Vaquero JJ, Desco M. Improved quantification for local regions of interest in preclinical PET imaging. Phys Med Biol. (2015) 60:7127-49. doi: 10.1088/0031-9155/60/18/7127
  176. Cal-Gonzalez J, Li X, Heber D, Rausch I, Moore SC, Schäfers K. Partial volume correction for improved PET quantification in 18F- NaF imaging of atherosclerotic plaques. J Nucl Cardiol. (2017). doi: 10.1007/s12350-017-0778-2. [Epub ahead of print].
  177. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging (2006) 25:907-21. doi: 10.1109/TMI.2006.876171
  178. Cysouw MCF, Kramer GM, Schoonmade LJ, Boellaard R, de Vet HCW, Hoekstra OS. Impact of partial-volume correction in oncological PET studies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging (2017) 44:2105-16. doi: 10.1007/s00259-017-3775-4
  179. Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med. (2008) 38:167-76. doi: 10.1053/j.semnuclmed.2008.01.002
  180. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. (2007) 48:1112-21. doi: 10.2967/jnumed.107.039792
  181. Rausch I, Quick HH, Cal-Gonzalez J, Sattler B, Boellaard R, Beyer T. Technical and instrumentational foundations of PET/MRI. Eur J Radiol. (2017) 94:A3-13. doi: 10.1016/j.ejrad.2017.04.004
  182. Kesner AL, Chung JH, Lind KE, Kwak JJ, Lynch D, Burckhardt D. Validation of software gating: a practical technology for respiratory motion correction in PET. Radiology. (2016) 281:239-48. doi: 10.1148/radiol.2016152105
  183. Lassen ML, Rasmussen T, Christensen TE, Kjaer A, Hasbak P. Respiratory gating in cardiac PET: effects of adenosine and dipyridamole. J Nucl Cardiol. (2016) 24:1941-9. doi: 10.1007/s12350-016-0631-z
  184. Olesen OV, Paulsen RR, Højgaard L, Roed B, Larsen R. Motion tracking for medical imaging: a nonvisible structured light tracking approach. IEEE Trans Med Imaging. (2012) 31:79-87. doi: 10.1109/TMI.2011.2165157
  185. Kesner AL, Schleyer PJ, Büther F, Walter MA, Schäfers KP, Koo PJ. On transcending the impasse of respiratory motion correction applications in routine clinical imaging -a consideration of a fully automated data driven motion control framework. EJNMMI Phys. (2014) 1:8. doi: 10.1186/2197-7364-1-8
  186. Grimm R, Fürst S, Souvatzoglou M, Forman C, Hutter J, Dregely I. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal. (2014) 19:110-20. doi: 10.1016/j.media.2014.08.003
  187. Munoz C, Kolbitsch C, Reader AJ, Marsden P, Schaeffter T, Prieto C. MR- based cardiac and respiratory motion-compensation techniques for PET-MR imaging. PET Clin. (2016) 11:179-91. doi: 10.1016/j.cpet.2015.09.004
  188. Kesner AL. The relevance of data driven motion correction in diagnostic PET. Eur J Nucl Med Mol Imaging 44:2326-7. doi: 10.1007/s00259-017-3794-1
  189. Kolbitsch C, Ahlman MA, Davies-Venn C, Evers R, Hansen M, Peressutti D. Cardiac and respiratory motion correction for simultaneous cardiac PET - MR. J Nucl Med. (2017) 58:846-52. doi: 10.2967/jnumed.115.171728
  190. Munoz C, Neji R, Cruz G, Mallia A, Jeljeli S, Reader AJ. Motion-corrected simultaneous cardiac positron emission tomography and coronary MR angiography with high acquisition efficiency. Magn Reson Med. (2017) 79:339-50. doi: 10.1002/mrm.26690
  191. Gillman A, Rose S, Smith J, Thomas P, Dowson N. PET motion correction in context of integrated PET/MR: current techniques, limitations, and future projections. Med Phys. (2017). 44:e430-45. doi: 10.1002/mp.12577.
  192. Huang C, Petibon Y, Ouyang J, Reese TG, Ahlman MA, Bluemke DA. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: phantom and patient studies. Med Phys. (2015) 42:1087-97. doi: 10.1118/1.4906247
  193. Livieratos L, Stegger L, Bloomfield PM, Schafers K, Bailey DL, Camici PG. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. Phys Med Biol. (2005) 50:3313-22. doi: 10.1088/0031-9155/50/14/008
  194. Rahmim A, Tang J, Zaidi H. Four-Dimensional image reconstruction strategies in cardiac-gated and respiratory-gated PET imaging. PET Clin. (2013) 8:51-67. doi: 10.1016/j.cpet.2012.10.005
  195. Picard Y, Thompson CJ. Motion correction of PET images using multiple acquisition frames. IEEE Trans Med Imaging (1997) 16:137-44. doi: 10.1109/42.563659
  196. Feng T, Wang J, Fung G, Tsui B. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET. Phys Med Biol. (2016) 61:151-68. doi: 10.1088/0031-9155/61/1/151
  197. Polycarpou I, Tsoumpas C, Marsden PK. Analysis and comparison of two methods for motion correction in PET imaging. Med Phys. (2012) 39:6474. doi: 10.1118/1.4754586
  198. Fieseler M, Gigengack F, Jiang X, Schäfers KP. Motion correction of whole- body PET data with a joint PET-MRI registration functional. Biomed Eng Online. (2014) 13(Suppl. 1):S2. doi: 10.1186/1475-925X-13-S1-S2
  199. Petibon Y, Guehl NJ, Reese TG, Ebrahimi B, Normandin MD, Shoup TM. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR. Phys Med Biol. (2017) 62:326-43. doi: 10.1088/1361-6560/aa5087
  200. Cal-González J, Tsoumpas C, Lassen ML, Rasul S, Koller L, Hacker M. Impact of motion compensation and partial volume correction for 18 F- NaF PET/CT imaging of coronary plaque. Phys Med Biol. (2017) 63:015005. doi: 10.1088/1361-6560/aa97c8
  201. Keller SH, Hansen C, Hansen C, Andersen FL, Ladefoged C, Svarer C. Sparsely sampled MR navigators as a practical tool for quality control and correction of head motion in simultaneous PET/MR. EJNMMI Phys. (2015) 1(Suppl. 1):A36. doi: 10.1186/2197-7364-1-S1-A36
  202. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. (2008) 29:193-207. doi: 10.1097/MNM.0b013e3282f3a515
  203. Sanders JC, Ritt P, Kuwert T, Vija AH, Maier AK. Fully automated data-driven respiratory signal extraction from SPECT images using laplacian eigenmaps. IEEE Trans Med Imaging. (2016) 35:2425-35. doi: 10.1109/TMI.2016.2576899
  204. Thielemans K, Schleyer P, Marsden PK, Manjeshwar RM, Wollenweber S, Ganin A. Comparison of different methods for data-driven respiratory gating of PET data. In: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). Seoul: IEEE (2013), p. 1-4.
  205. Beyer T, Moser E. MR/PET or PET/MRI: does it matter? Magn Reson Mater Phys Biol Med. (2013) 26:1-4. doi:10.1007/s10334-012-0365-0
  206. Träber F, Block W, Layer G, Bräucker G, Gieseke J, Kretzer S, et al. Determination of H relaxation times of water in human bone marrow by fat-suppressed turbo spin echo in comparison to MR spectroscopic methods. J Magn Reson Imaging (1996) 6:541-8. doi: 10.1002/jmri.18800 60318
  207. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT. PET/MR imaging of bone lesions -Implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. (2012) 39:1154-60. doi: 10.1007/s00259-012-2113-0
  208. Koesters T, Friedman KP, Fenchel M, Zhan Y, Hermosillo G, Babb J. Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain. J Nucl Med. (2016) 57:918-24. doi: 10.2967/jnumed.115.166967
  209. Anazodo UC, Thiessen JD, Ssali T, Mandel J, Günther M, Butler J. Feasibility of simultaneous whole-brain imaging on an integrated PET-MRI system using an enhanced 2-point Dixon attenuation correction method. Front Neurosci. (2015) 8:434. doi: 10.3389/fnins.2014.00434
  210. Izquierdo-Garcia D, Hansen AE, Förster S, Benoit D, Schachoff S, Fürst S. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med. (2014) 55:1825-30. doi: 10.2967/jnumed.113.136341
  211. Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging (2014) 33:2332-41. doi: 10.1109/TMI.2014.2340135
  212. Merida I, Costes N, Heckemann R, Hammers A. Pseudo-CT generation in brain MR-PET attenuation correction: comparison of several multi-atlas methods. EJNMMI Phys. (2015) 2(Suppl. 1):A29. doi: 10.1186/2197-7364-2-S1-A29
  213. Benoit D, Ladefoged CN, Rezaei A, Keller SH, Andersen FL, Højgaard L. Optimized MLAA for quantitative non-TOF PET/MR of the brain. Phys Med Biol. (2016) 61:8854-74. doi: 10.1088/1361-6560/61/24/8854
  214. Cabello J, Lukas M, Forster S, Pyka T, Nekolla SG, Ziegler SI. MR-Based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. J Nucl Med. (2015) 56:423-9. doi: 10.2967/jnumed.114.146308
  215. Juttukonda MR, Mersereau BG, Chen Y, Su Y, Rubin BG, Benzinger TLS. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2 * to CT-Hounsfield units. Neuroimage. (2015) 112:160-8. doi: 10.1016/j.neuroimage.2015.03.009
  216. Ladefoged CN, Benoit D, Law I, Holm S, Kjaer A, Højgaard L. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging. Phys Med Biol. (2015) 60:8047-65. doi: 10.1088/0031-9155/60/20/8047
  217. Ladefoged CN, Law I, Anazodo U, St Lawrence K, Izquierdo-Garcia D, Catana C. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage (2017) 147:346-59. doi: 10.1016/j.neuroimage.2016.12.010
  218. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. (2009) 50:520-6. doi: 10.2967/jnumed.108.054726
  219. Rausch I, Rust P, DiFranco MD, Lassen M, Stadlbauer A, Mayerhoefer ME. Reproducibility of MRI dixon-based attenuation correction in combined PET/MR with applications for lean body mass estimation. J Nucl Med. (2016) 57:1096-101. doi: 10.2967/jnumed.115.168294
  220. Sekine T, Buck A, Delso G, Ter Voert EE, Huellner M, Veit-Haibach P. Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: application of a head atlas and comparison to true CT-based attenuation correction. J Nucl Med. (2016) 57:215-220. doi: 10.2967/jnumed.115.159228
  221. Paulus DH, Quick HH, Geppert C, Fenchel M, Zhan Y, Hermosillo G. Whole-body PET/MR imaging: quantitative evaluation of a novel model- based MR attenuation correction method including bone. J Nucl Med. (2015) 56:1061-6. doi: 10.2967/jnumed.115.156000
  222. Rausch I, Rischka L, Ladefoged CN, Furtner J, Fenchel M, Hahn A. PET/MRI for oncologic brain imaging: a comparison of standard MR-based attenuation corrections with a model-based approach for the siemens mMR PET/MR system. J Nucl Med. (2017) 58:1519-25. doi: 10.2967/jnumed.116.186148
  223. Leynes AP, Yang J, Wiesinger F, Kaushik S, Shanbhag DD, Seo Y, et al. Direct PseudoCT generation for pelvis PET/MRI attenuation correction using deep convolutional neural networks with multi-parametric MRI: zero echo-time and dixon deep pseudoCT (ZeDD-CT). J Nucl Med. (2018). 59:852-8. doi: 10.2967/jnumed.117.198051
  224. Arabi H, Zaidi H. Whole-body bone segmentation from MRI for PET/MRI attenuation correction using shape-based averaging. Med Phys. (2016) 43:5848-61. doi: 10.1118/1.4963809
  225. Mehranian A, Arabi H, Zaidi H. Vision 20/20: magnetic resonance imaging- guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys. (2016) 43:1130-55. doi: 10.1118/1.4941014
  226. Olin A, Ladefoged CN, Langer NH, Keller SH, Löfgren JO, Hansen AE. Reproducibility of MR-based attenuation maps in PET/MRI and the impact on PET quantification in lung cancer. J Nucl Med. (2017). doi: 10.2967/jnumed.117.198853. [Epub ahead of print].
  227. Heußer T, Rank CM, Berker Y, Freitag MT, Kachelrieß M. MLAA-based attenuation correction of flexible hardware components in hybrid PET/MR imaging. EJNMMI Phys. (2017) 4:12. doi: 10.1186/s40658-017-0177-4
  228. Sari H, Erlandsson K, Law I, Larsson HB, Ourselin S, Arridge S. Estimation of an image derived input function with MR-defined carotid arteries in FDG- PET human studies using a novel partial volume correction method. J Cereb Blood Flow Metab. (2017) 37:1398-409. doi: 10.1177/0271678X16656197
  229. Iida H, Rhodes CG, de Silva R, Yamamoto Y, Araujo LI, Maseri A. Myocardial tissue fraction-correction for partial volume effects and measure of tissue viability. J Nucl Med. (1991) 32:2169-2175.
  230. Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med. (1992) 33:1669-77.
  231. Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis RB. Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab. (2011) 31:1986-98. doi: 10.1038/jcbfm.2011.107
  232. Zanotti-Fregonara P, Liow JS, Comtat C, Zoghbi SS, Zhang Y, Pike VW. Image-derived input function in PET brain studies. Nucl Med Commun. (2012) 33:982-9. doi: 10.1097/MNM.0b013e328356185c
  233. Mourik JEM, Lubberink M, Lammertsma AA, Boellaard R. Image derived input functions: effects of motion on tracer kinetic analyses. Mol Imaging Biol. (2011) 13:25-31. doi: 10.1007/s11307-010-0301-5
  234. Mourik JE, Lubberink M, Schuitemaker A, Tolboom N, van Berckel BN, Lammertsma AA. Image-derived input functions for PET brain studies. Eur J Nucl Med Mol Imaging (2009) 36:463-71. doi: 10.1007/s00259-008-0986-8
  235. Mourik JEM, Lubberink M, Klumpers UMH, Comans EF, Lammertsma AA, Boellaard R. Partial volume corrected image derived input functions for dynamic PET brain studies: methodology and validation for [11C]flumazenil. Neuroimage. (2008) 39:1041-50. doi: 10.1016/j.neuroimage.2007.10.022
  236. Zhou S, Chen K, Reiman EM, Li D, Shan B. A method for generating image- derived input function in quantitative 18F-FDG PET study based on the monotonicity of the input and output function curve. Nucl Med Commun. (2012) 33:362-70. doi: 10.1097/MNM.0b013e32834f262e
  237. Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. (1999) 40:1666-75.
  238. Guo H, Renaut R, Chen K, Reiman E. Clustering huge data sets for parametric PET imaging. BioSystems. (2003) 71:81-92. doi: 10.1016/S0303-2647(03)00112-6
  239. Fang Y-H, Kao T, Liu R-S, Wu L-C. Estimating the input function non- invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data. Eur J Nucl Med Mol Imaging (2004) 31:692-702. doi: 10.1007/s00259-003-1412-x
  240. Liptrot M, Adams KH, Martiny L, Pinborg LH, Lonsdale MN, Olsen NV. Cluster analysis in kinetic modelling of the brain: a noninvasive alternative to arterial sampling. Neuroimage (2004) 21:483-93. doi: 10.1016/j.neuroimage.2003.09.058
  241. Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng. (2005) 52:201-10. doi: 10.1109/TBME.2004.840193
  242. Su Y, Shoghi KI. Single-input-dual-output modeling of image-based input function estimation. Mol Imaging Biol. (2010) 12:286-94. doi: 10.1007/s11307-009-0273-5
  243. Lyoo CH, Zanotti-Fregonara P, Zoghbi SS, Liow J-S, Xu R, Pike VW, et al. Image-derived input function derived from a supervised clustering algorithm: methodology and validation in a clinical protocol using [11C](R)- rolipram. PLoS ONE (2014) 9:e89101. doi: 10.1371/journal.pone.0089101
  244. Simončič U, Zanotti-Fregonara P. Image-derived input function with factor analysis and a-priori information. Nucl Med Commun. (2015) 36:187-93. doi: 10.1097/MNM.0000000000000231
  245. Litton JE. Input function in PET brain studies using MR- defined arteries. J Comput Assist Tomogr. (1997) 21:907-9. doi: 10.1097/00004728-199711000-00012
  246. Fung EK, Carson RE. Cerebral blood flow with [ 15 O]water PET studies using an image-derived input function and MR-defined carotid centerlines. Phys Med Biol. (2013) 58:1903-23. doi: 10.1088/0031-9155/58/6/1903
  247. Da Silva NA, Herzog H, Weirich C, Tellmann L, Rota Kops E, Hautzel H, et al. Image-derived input function obtained in a 3TMR-brainPET. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. (2013) 702:22-5. doi: 10.1016/j.nima.2012.08.030
  248. Jochimsen TH, Zeisig V, Schulz J, Werner P, Patt M, Patt J. Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model. EJNMMI Phys. (2016) 3:2. doi: 10.1186/s40658-016-0139-2
  249. Khalighi MM, Deller TW, Fan AP, Gulaka PK, Shen B, Singh P. Image- derived input function estimation on a TOF-enabled PET/MR for cerebral blood flow mapping. J Cereb Blood Flow Metab. (2018) 38:126-35. doi: 10.1177/0271678X17691784
  250. van Assema DM, Lubberink M, Bauer M, van der Flier WM, Schuit RC, Windhorst AD. Blood-brain barrier P-glycoprotein function in Alzheimer's disease. Brain. (2012) 135:181-9. doi: 10.1093/brain/awr298
  251. Gjedde A. Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res Rev. (1982) 4:237-74. doi: 10.1016/0165-0173(82)90018-2
  252. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to- brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. (1983) 3:1-7. doi: 10.1038/jcbfm.1983.1
  253. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time- activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. (1990) 10:740-7. doi: 10.1038/jcbfm.1990.127
  254. Kety SS, Schmidt CF. The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol Content. (1945) 143:53-66. doi: 10.1152/ajplegacy.1945.143.1.53
  255. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. (1948) 27:476-83. doi: 10.1172/JCI101994
  256. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol. (1984) 15:217-27. doi: 10.1002/ana.410150302
  257. Bailey DL, Pichler BJ, Gückel B, Barthel H, Beer AJ, Bremerich J. Combined PET/MRI: multi-modality multi-parametric imaging is here. Mol Imaging Biol. (2015) 17:595-608. doi: 10.1007/s11307-015-0886-9
  258. Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy 1. Radiology (2010) 256:348-64. doi: 10.1148/radiol.10091760
  259. Singh D, Miles K. Multiparametric PET/CT in oncology. Cancer Imaging. (2012) 12:336-44. doi: 10.1102/1470-7330.2012.9007
  260. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present. . . any future? Eur J Nucl Med Mol Imaging (2017) 44:151-65. doi: 10.1007/s00259-016-3427-0
  261. Heiss W-D. Hybrid PET/MR imaging in neurology: present applications and prospects for the future. J Nucl Med. (2016) 57:993-5. doi: 10.2967/jnumed.116.175208
  262. Puttick S, Bell C, Dowson N, Rose S, Fay M. PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov Today (2015) 20:306-17. doi: 10.1016/j.drudis.2014.10.016
  263. Nensa F, Poeppel TD, Tezgah E, Heusch P, Nassenstein K, Forsting M, et al. Integrated assessment of cardiac PET/MRI: co-registered PET and MRI polar plots by mutual mr-based segmentation of the left ventricular myocardium. World J Cardiovasc Dis (2017) 7:91-104. doi: 10.4236/wjcd.2017.74010
  264. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. (2013) 54:402-15. doi: 10.2967/jnumed.112.105353
  265. Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 patients. J Nucl Med. (2016) 57:420-30. doi: 10.2967/jnumed.115.158808
  266. Even-Sapir E, Keidar Z, Bar-Shalom R. Hybrid imaging (SPECT/CT and PET/CT)-improving the diagnostic accuracy of functional/metabolic and anatomic imaging. Semin Nucl Med. (2009) 39:264-75. doi: 10.1053/j.semnuclmed.2009.03.004
  267. Kjaer A. Hybrid imaging with PET/CT and PET/MR. Cancer Imaging (2014) 14(Suppl. 1):O32. doi: 10.1186/1470-7330-14-S1-O32
  268. Visvikis D, Hatt M, Tixier F, Le Rest CC. The age of reason for FDG PET image-derived indices. Eur J Nucl Med Mol Imaging (2012) 39:1670-2. doi: 10.1007/s00259-012-2239-0
  269. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. Syst Man Cybern. (1973) 3:610-21. doi: 10.1109/TSMC.1973.4309314
  270. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. (2011) 52:369-78. doi: 10.2967/jnumed.110.082404
  271. Bundschuh RA, Dinges J, Neumann L, Seyfried M, Zsótér N, Papp L, et al. Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med. (2014) 55:891-7. doi: 10.2967/jnumed.113.127340
  272. Pyka T, Bundschuh RA, Andratschke N, Mayer B, Specht HM, Papp L. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat Oncol. (2015) 10:100. doi: 10.1186/s13014-015-0407-7
  273. Desseroit MC, Visvikis D, Tixier F, Majdoub M, Perdrisot R, Guillevin R. Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I-III. Eur J Nucl Med Mol Imaging (2016) 43:1477-85. doi: 10.1007/s00259-016-3325-5
  274. Brooks FJ, Grigsby PW. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med. (2014) 55:37-42. doi: 10.2967/jnumed.112.116715
  275. Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D. 18F- FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. (2015) 56:38-44. doi: 10.2967/jnumed.114.144055
  276. Zhao B, Tan Y, Tsai WY, Qi J, Xie C, Lu L. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. (2016) 6:23428. doi: 10.1038/srep23428
  277. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. (2015) 278:151169. doi: 10.1148/radiol.2015151169
  278. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. (2014) 5:4006. doi: 10.1038/ncomms5006
  279. Parmar C, Leijenaar RT, Grossmann P, Rios Velazquez E, Bussink J, Rietveld D. Radiomic feature clusters and Prognostic Signatures specific for Lung and Head and Neck cancer. Sci Rep. (2015) 5:1-10. doi: 10.1038/srep11044
  280. Gillies RJ, Beyer T. PET and MRI: is the whole greater than the sum of its parts? Cancer Res. (2016) 76:6163-6. doi: 10.1158/0008-5472.CAN-16-2121
  281. Court LE, Fave X, Mackin D, Lee J, Yang J, Zhang L. Computational resources for radiomics. Transl Cancer Res. (2016) 5:340-8. doi: 10.21037/tcr.2016.06.17
  282. Kourou K, Exarchos TP, Exarchos KP, Karamouzis M V., Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. (2015) 13:8-17. doi: 10.1016/j.csbj.2014.11.005
  283. Kickingereder P, Burth S, Wick A, Götz M, Eidel O, Schlemmer HP. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology (2016) 280:880-9. doi: 10.1148/radiol.2016160845
  284. Ypsilantis PP, Siddique M, Sohn HM, Davies A, Cook G, Goh V. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS ONE (2015) 10:e0137036. doi: 10.1371/journal.pone.0137036
  285. Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. (2016) 6:71. doi: 10.3389/fonc.2016.00071
  286. Wu J, Cui Y, Sun X, Cao G, Li B, Ikeda DM. Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways. Clin Cancer Res. (2017) 23:3334-2. doi: 10.1158/1078-0432.CCR-16-2415
  287. National Electrical Manufacturers Association. NEMA Standards Publication NU 4 -2008 Performance Measurements of Small Animal Positron Emission Tomographs. Rosslyn, VA (2008).
  288. National Electrical Manufacturers Association. NEMA Standards Publication NU-2 2012 Performance Measurements of Positron Emission Tomographs. Rosslyn, VA (2012).
  289. National Electrical Manufacturers Association. NEMA Standards Publication NU-1 2012 Performance Measurements of Gamma Cameras. Rosslyn, VA (2012).
  290. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. (2008) 50(Suppl. 1):11S-20S. doi: 10.2967/jnumed.108.057182
  291. Beyer T, Czernin J, Freudenberg LS. Variations in clinical PET/CT operations: results of an international survey of active PET/CT users. J Nucl Med. (2011) 52:303-10. doi: 10.2967/jnumed.110.079624
  292. Wieder H, Freudenberg LS, Czernin J, Navar BN, Israel O, Beyer T. Variations of clinical SPECT/CT operations. Nuklearmedizin (2012) 51:154-60. doi: 10.3413/Nukmed-0467-12-01
  293. Chauvie S, Bergesio F. The strategies to homogenize PET/CT metrics: the case of onco-haematological clinical trials. Biomedicines. (2016) 4:26. doi: 10.3390/biomedicines4040026
  294. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging (2014) 42:328-54. doi: 10.1007/s00259-014-2961-x
  295. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. (2009) 36:2103-10. doi: 10.1007/s00259-009-1264-0
  296. Flotats A, Knuuti J, Gutberlet M, Marcassa C, Bengel FM, Kaufmann PA. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging. (2011) 38:201-12. doi: 10.1007/s00259-010-1586-y
  297. Chalkidou A, O'Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS ONE (2015) 10:e0124165. doi: 10.1371/journal.pone.0124165
  298. Molina D, Pérez-Beteta J, Martínez-González A, Martino J, Velasquez C, Arana E. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization. PLoS ONE (2017) 12:e0178843. doi: 10.1371/journal.pone.0178843
  299. Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging. (2015) 2:41002. doi: 10.1117/1.JMI.2.4.041002
  300. van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ. Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. (2016) 18:788-95. doi: 10.1007/s11307-016- 0940-2
  301. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. (2012) 53:693-700. doi: 10.2967/jnumed.111.099127
  302. Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS. Stability of FDG-PET radiomics features: AN integrated analysis of test- retest and inter-observer variability. Acta Oncol (Madr) (2013) 52:1391-7. doi: 10.3109/0284186X.2013.812798
  303. Costello MJ. Motivating online publication of data. Bioscience (2009) 59:418-27. doi: 10.1525/bio.2009.59.5.9
  304. Wicherts JM, Bakker M, Molenaar D. Willingness to share research data is related to the strength of the evidence and the quality of reporting of statistical results. PLoS ONE (2011) 6:e26828. doi: 10.1371/journal.pone.0026828
  305. Roche DG, Kruuk LEB, Lanfear R, Binning SA. Public data archiving in ecology and evolution: how well are we doing? PLoS Biol. (2015) 13:e1002295. doi: 10.1371/journal.pbio.1002295
  306. Tenopir C, Allard S, Douglass K, Aydinoglu AU, Wu L, Read E. Data sharing by scientists: practices and perceptions. PLoS ONE (2011) 6:e21101. doi:10.1371/journal.pone.0021101
  307. Santos C, Blake J, States DJ. Supplementary data need to be kept in public repositories. Nature (2005) 438:738. doi: 10.1038/438738a
  308. Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F. Extensible markup language (XML). World Wide Web J. (1997) 2:27-66.
  309. Kadrmas DJ, Hoffman JM. Methodology for quantitative rapid multi- tracer PET tumor characterizations. Theranostics (2013) 3:757-73. doi: 10.7150/thno.5201
  310. El Fakhri G, Moore SC, Maksud P, Aurengo A, Kijewski MF. Absolute activity quantitation in simultaneous 123I/99mTc brain SPECT. J Nucl Med. (2001) 42:300-8.
  311. El Fakhri G, Sitek A, Zimmerman RE, Ouyang J. Generalized five- dimensional dynamic and spectral factor analysis. Med Phys. (2006) 33:1016-24. doi: 10.1118/1.2179168
  312. Verhaeghe J, D'Asseler Y, Staelens S, Lemahieu I. Noise properties of simultaneous dual tracer PET imaging. In: IEEE Nuclear Science Symposium Conference Record, Vol 5. Fajardo: IEEE (2005). p. 2611-4.
  313. Figueiras FP, Jiménez X, Pareto D, Gómez V, Llop J, Herance R. Simultaneous dual-tracer PET imaging of the rat brain and its application in the study of cerebral ischemia. Mol Imaging Biol. (2011) 13:500-10. doi: 10.1007/s11307-010-0370-5
  314. Koeppe RA, Ficaro EP, Raffel DM, Minoshima S, Kilbourn MR. Temporally overlapping dual-tracer PET studies. In: Carson RE, Daube-Witherspoon ME, Herscovitch P, editors. Quantitative Functional Brain Imaging with Positron Emission Tomography. San Diego, CA: Elsevier (1998). p. 359-66.
  315. Kadrmas DJ, Rust TC. Feasibility of rapid multitracer PET tumor imaging. IEEE Trans Nucl Sci. (2005) 52:1341-7. doi: 10.1109/TNS.2005.858230
  316. Andreyev A, Celler A. Dual-isotope PET using positron-gamma emitters. Phys Med Biol. (2011) 56:4539-56. doi: 10.1088/0031-9155/56/14/020
  317. Lage E, Herraiz JL, Parot V. Multiplexable Emission Tomography. (2013). Available online at: https://patents.google.com/patent/ WO2013188011A1/en.
  318. Cal-González J, Lage E, Herranz E, Vicente E, Udias JM, Moore SC. Simulation of triple coincidences in PET. Phys Med Biol. (2015) 60:117-36. doi: 10.1088/0031-9155/60/1/117
  319. Strobel K, Heinrich S, Bhure U, Soyka J, Veit-Haibach P, Pestalozzi BC, et al. Contrast-enhanced 18 F-FDG PET/CT: 1-stop-shop imaging for assessing the resectability of pancreatic cancer. J Nucl Med. (2008) 49:1408-13. doi: 10.2967/jnumed.108.051466
  320. Badiee S, Franc BL, Webb EM, Chu B, Hawkins RA, Coakley F. Role of IV iodinated contrast material in 18 F-FDG PET/CT of liver metastases. Am J Roentgenol. (2008) 191:1436-9. doi: 10.2214/AJR.07.3750
  321. Asagi A, Ohta K, Nasu J, Tanada M, Nadano S, Nishimura R. Utility of contrast-enhanced FDG-PET/CT in the clinical management of pancreatic cancer. Pancreas (2013) 42:11-19. doi: 10.1097/MPA.0b013e3182550d77
  322. Kuhn FP, Hullner M, Mader CE, Kastrinidis N, Huber GF, von Schulthess GK, et al. Contrast-enhanced PET/MR imaging versus contrast-enhanced PET/CT in head and neck cancer: how much mr information is needed? J Nucl Med. (2014) 55:551-8. doi: 10.2967/jnumed.113.125443
  323. Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin. (2013) 63:395-418. doi: 10.3322/caac.21199
  324. Yen SK, Padmanabhan P, Selvan ST. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics (2013) 3:986-1003. doi: 10.7150/thno.4827
  325. Fakhri G El. Ready for prime time? Dual tracer PET and SPECT imaging. Am J Nucl Med Mol Imaging (2012) 2:415-7.
  326. Chapman SE, Diener JM, Sasser TA, Correcher C, González AJ, Avermaete TV. Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol. Am J Nucl Med Mol Imaging. (2012) 2:405-14.
  327. Shi X, Meng X, Sun X, Xing L, Yu J. PET/CT imaging-guided dose painting in radiation therapy. Cancer Lett. (2014) 355:169-75. doi: 10.1016/j.canlet.2014.07.042
  328. Thomas HM, Kinahan PE, Samuel JJE, Bowen SR. Impact of tumour motion compensation and delineation methods on FDG PET-based dose painting plan quality for NSCLC radiation therapy. J Med Imaging Radiat Oncol. (2018) 62:81-90. doi: 10.1111/1754-9485.12693
  329. Daniel M, Andrzejewski P, Sturdza A, Majercakova K, Baltzer P, Pinker K. Impact of hybrid PET/MR technology on multiparametric imaging and treatment response assessment of cervix cancer. Radiother Oncol. (2017) 125:420-5. doi: 10.1016/j.radonc.2017.10.036
  330. Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol. (2004) 59:78-86. doi: 10.1016/j.ijrobp.2003. 10.044
  331. Souvatzoglou M, Krause BJ, Pürschel A, Thamm R, Schuster T, Buck AK, et al. Influence of 11C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol. (2011) 99:193-200. doi: 10.1016/j.radonc.2011. 05.005
  332. Pasqualetti F, Panichi M, Sainato A, Matteucci F, Galli L, Cocuzza P. [(18)F]Choline PET/CT and stereotactic body radiotherapy on treatment decision making of oligometastatic prostate cancer patients: preliminary results. Radiat Oncol. (2016) 11:9. doi: 10.1186/s13014-016-0586-x
  333. Alongi F, Fersino S, Giaj Levra N, Mazzola R, Ricchetti F, Fiorentino A. Impact of 18F-choline PET/CT in the decision-making strategy of treatment volumes in definitive prostate cancer volumetric modulated radiation therapy. Clin Nucl Med. (2015) 40:e496-500. doi: 10.1097/RLU.0000000000000841
  334. McKinley ET, Ayers GD, Smith RA, Saleh SA, Zhao P, Washington MK, et al. Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS ONE (2013) 8:e58938. doi: 10.1371/journal.pone.0058938
  335. Segard T, Robins PD, Yusoff IF, Ee H, Morandeau L, Campbell EM, et al. Detection of hypoxia with 18F-fluoromisonidazole (18F-FMISO) PET/CT in suspected or proven pancreatic cancer. Clin Nucl Med. (2013) 38:1-6. doi: 10.1097/RLU.0b013e3182708777
  336. Lapi SE, Lewis JS, Dehdashti F. Evaluation of hypoxia with copper- labeled diacetyl-bis(N-methylthiosemicarbazone). Semin Nucl Med. (2015) 45:177-85. doi: 10.1053/j.semnuclmed.2014.10.003
  337. Knopf A-C, Lomax A. In vivo proton range verification: a review. Phys Med Biol. (2013) 58:R131-60. doi: 10.1088/0031-9155/58/15/R131
  338. Sportelli G, Belcari N, Camarlinghi N, Cirrone GA, Cuttone G, Ferretti S. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system. Phys Med Biol. (2014) 59:43-60. doi: 10.1088/0031-9155/59/1/43
  339. Shao Y, Sun X, Lou K, Zhu XR, Mirkovic D, Poenisch F. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study. Phys Med Biol. (2014) 59:3373-88. doi: 10.1088/0031-9155/59/13/3373
  340. Ferrero V, Fiorina E, Morrocchi M, Pennazio F, Baroni G, Battistoni G. Online proton therapy monitoring: clinical test of a Silicon-photodetector- based in-beam PET. Sci Rep. (2018) 8:4100. doi: 10.1038/s41598-018- 22325-6
  341. Parodi K, Bortfeld T, Haberer T. Comparison between in-beam and offline positron emission tomography imaging of proton and carbon ion therapeutic irradiation at synchrotron-and cyclotron-based facilities. Int J Radiat Oncol. (2008) 71:945-56. doi: 10.1016/j.ijrobp.2008. 02.033