Academia.eduAcademia.edu

Outline

The Ontogenesis of Action Syntax

Collabra: Psychology

https://doi.org/10.1525/COLLABRA.215

Abstract

Language and action share similar organizational principles. Both are thought to be hierarchical and recursive in nature. Here we address the relationship between language and action from developmental and neurophysiological perspectives. We discuss three major aspects: The extent of the analogy between language and action; the necessity to extend research on the yet largely neglected aspect of action syntax; the positive contribution of a developmental approach to this topic. We elaborate on the claim that adding an ontogenetic approach will help to obtain a comprehensive picture about both the interplay between language and action and its development, and to answer the question whether the underlying mechanisms of detecting syntactic violations of action sequences are similar to or different from the processing of language syntactic violations.

References (94)

  1. Amoruso, L., Gelormini, C., Aboitiz, F., Alvarez González, M., Manes, F., Cardona, J. F., & Ibanez, A. (2013). N400 ERPs for actions: Building meaning in context. Frontiers in Human Neuroscience, 7(3), 57. DOI: https://doi.org/10.3389/fnhum.2013.00057
  2. Aslin, R. N. (2012). Infant eyes: A window on cognitive development. Infancy, 17(1), 126-140. DOI: https:// doi.org/10.1111/j.1532-7078.2011.00097.x
  3. Bahlmann, J., Schubotz, R. I., & Friederici, A. D. (2008). Hierarchical artificial grammar processing engages Broca's area. NeuroImage, 42(2), 525-34. DOI: https:// doi.org/10.1016/j.neuroimage.2008.04.249
  4. Bahlmann, J., Schubotz, R., Mueller, J. L., Koester, D., & Friederici, A. D. (2009). Neural circuits of hierarchical visuo-spatial sequence processing. Brain Research, 1298, 161-70. DOI: https://doi.org/10.1016/j. brainres.2009.08.017
  5. Balconi, M., & Vitaloni, S. (2014). N400 effect when a semantic anomaly is detected in action representation. A source localization analysis. Journal of Clinical Neurophysiology, 31(1), 58-64. DOI: https://doi. org/10.1097/WNP.0000000000000017
  6. Baldwin, D. A., Baird, J. A., Saylor, M. M., & Clark, A. (2001). Infants parse dynamic action. Child Development, 72(3), 708-717. DOI: https://doi.org/10. 1111/1467-8624.00310
  7. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617-645. DOI: https:// doi.org/10.1146/annurev.psych.59.103006.093639
  8. Basirat, A., Dehaene, S., & Dehaene-Lambertz, G. (2014). A hierarchy of cortical responses to sequence violations in three-month-old infants. Cognition, 132(2), 137-50. DOI: https://doi.org/10.1016/j. cognition.2014.03.013
  9. Bauer, P. J., Hertsgaard, L. A., Dropik, P., & Daly, B. P. (1998). When even arbitrary order becomes important: developments in reliable temporal sequencing of arbitrarily ordered events. Memory (Hove, England), 6(2), 165-98. DOI: https://doi. org/10.1080/741942074
  10. Behmer, L. P., & Crump, M. J. C. (2017). The dynamic range of response set activation during action sequencing. Journal of Experimental Psychology: Human Perception and Performance, 43(3), 537-554. DOI: https://doi. org/10.1037/xhp0000335
  11. Boeckx, C. A., & Fujita, K. (2014). Syntax, action, comparative cognitive science, and darwinian thinking. Frontiers in Psychology. DOI: https://doi.org/10.3389/ fpsyg.2014.00627
  12. Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 19(1), 1-15. DOI: https://doi. org/10.1037/h0044160
  13. Caramazza, A., Anzellotti, S., Strnad, L., & Lingnau, A. (2014). Embodied cognition and mirror neurons: A critical assessment. Annual Review of Neuroscience, 37(1), 1-15. DOI: https://doi.org/10.1146/ annurev-neuro-071013-013950
  14. Casado, P., Martín-Loeches, M., León, I., Hernández- Gutiérrez, D., Espuny, J., Muñoz, F., de Vega, M., et al. (2017). When syntax meets action: Brain potential evidence of overlapping between language and motor sequencing. Cortex. DOI: https://doi.org/10.1016/j. cortex.2017.11.002
  15. Chomsky, N. (1957). Syntactic Structure. The Hague: Mouton.
  16. Chomsky, N. (2006). Language and mind. Cambridge University Press. DOI: https://doi.org/10.1017/ CBO9780511791222
  17. Christiansen, M. H., Conway, C. M., & Onnis, L. (2012). Similar neural correlates for language and sequential learning: Evidence from event-related brain potentials, 27(2), 231-256. DOI: https://doi.org/10.1080/01690 965.2011.606666
  18. Clahsen, H., & Hansen, D. (2012). Profiling Linguistic Disability in German-Speaking Children. In P. Ball, M. Crystal, & D. Fletcher (Eds.), Assessing grammar: The languages of LARSP (pp. 77-91). Bristol: Multilingual Matters. DOI: https://doi.org/10. 21832/9781847696397-007
  19. Clerget, E., Winderickx, A., Fadiga, L., & Olivier, E. (2009). Role of Broca's area in encoding sequential human actions: a virtual lesion study. Neuroreport, 20(16), 1496-9. DOI: https://doi.org/10.1097/ WNR.0b013e3283329be8
  20. Comrie, B. (1989). Language universals and linguistic typology. Cambridge, MA: MIT Press.
  21. Crone, E. A., Poldrack, R. A., & Durston, S. (2010). Challenges and methods in developmental neuroimaging. Human Brain Mapping, 31(6), 835- 837. DOI: https://doi.org/10.1002/hbm.21053
  22. Daum, M. M., Prinz, W., & Aschersleben, G. (2008). Encoding the goal of an object-directed but uncompleted reaching action in 6-and 9-month-old infants. Developmental Science, 11(4), 607-619. DOI: https://doi.org/10.1111/j.1467-7687.2008.00705.x de Haan, M. (2013). Infant EEG and event-related potentials. Hove & New York: Taylor & Francis Group. DOI: https://doi.org/10.4324/9780203759660
  23. de Villiers, J. G., Tager Flusberg, H. B., Hakuta, K., & Cohen, M. (1979). Children's comprehension of relative clauses. Journal of Psycholinguistic Research, 8(5), 499-518. DOI: https://doi.org/10.1007/ BF01067332
  24. Dominey, P. F., Hoen, M., Blanc, J.-M., & Lelekov- Boissard, T. (2003). Neurological basis of language and sequential cognition: Evidence from simulation, aphasia, and ERP studies. Brain and Language, 86(2), 207-225. DOI: https://doi.org/10.1016/ S0093-934X(02)00529-1
  25. Egorova, N., Shtyrov, Y., & Pulvermüller, F. (2016). Brain basis of communicative actions in language. NeuroImage, 125, 857-867. DOI: https://doi. org/10.1016/j.neuroimage.2015.10.055
  26. Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where's the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202-209. DOI: https://doi.org/10.1016/j.tics.2013.03.006
  27. Fazio, P., Cantagallo, A., Craighero, L., D'Ausilio, A., Roy, A. C., Pozzo, T., Fadiga, L., et al. (2009). Encoding of human action in Broca's area. Brain: A Journal of Neurology, 132(Pt 7), 1980-8. DOI: https:// doi.org/10.1093/brain/awp118
  28. Frank, S. L., Bod, R., & Christiansen, M. H. (2012). How hierarchical is language use? Proceedings. Biological Sciences, 279(1747), 4522-31. DOI: https://doi. org/10.1098/rspb.2012.1741
  29. Freier, L., Cooper, R. P., & Mareschal, D. (2017). Preschool children's control of action outcomes. Developmental Science, 20(2), e12354. DOI: https://doi.org/10.1111/ desc.12354
  30. Friederici, A., Bahlmann, J. R., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences, 103(7), 2458-2463. DOI: https://doi.org/10.1073/ pnas.0509389103
  31. Friederici, A. D. (2004). Event-related brain potential studies in language. Current Neurology and Neuroscience Reports, 4(6), 466-470. DOI: https://doi. org/10.1007/s11910-004-0070-0
  32. Gervain, J., Macagno, F., Cogoi, S., Peña, M., & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences of the United States of America, 105(37), 14222-7. DOI: https://doi.org/10.1073/pnas.0806530105
  33. Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48(7), 905- 922. DOI: https://doi.org/10.1016/j.cortex.2011. 04.010
  34. Göksun, T., Hirsh-Pasek, K., & Michnick Golinkoff, R. (2010). Trading Spaces: Carving up Events for Learning Language. Perspectives on Psychological Science, 5(1), 33-42. DOI: https://doi.org/10. 1177/1745691609356783
  35. Goldberg, A. E. (2006). Constructions at work: the nature of generalization in language. Oxford University Press.
  36. Gómez, D. M., Berent, I., Benavides-Varela, S., Bion, R. A. H., Cattarossi, L., Nespor, M., & Mehler, J. (2014). Language universals at birth. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 5837-41. DOI: https://doi. org/10.1073/pnas.1318261111
  37. Gönül, G., Takmaz, E. K., Hohenberger, A., & Corballis, M. (2018). The cognitive ontogeny of tool making in children: The role of inhibition and hierarchical structuring. Journal of Experimental Child Psychology, 173, 222-238. DOI: https://doi.org/10.1016/j. jecp.2018.03.017
  38. Gredebäck, G., Johnson, S., & von Hofsten, C. (2010). Eye tracking in infancy research. Developmental Neuropsychology, 35(1), 1-19. DOI: https://doi. org/10.1080/87565640903325758
  39. Greenberg, J. H. (1963). Some universals of grammar with particular reference to the order of meaningful elements. Universals of language. In J. H. Greenberg, (Ed.). Cambridge, MA: MIT Press.
  40. Hari, R. (2006). Action-perception connection and the cortical mu rhythm. Progress in Brain Research, 159, 253-60. DOI: https://doi.org/10.1016/ S0079-6123(06)59017-X
  41. Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: what is it, who has it, and how did it evolve? Science (New York, N.Y.), 298(5598), 1569-79. DOI: https://doi.org/10.1126/science.298.5598.1569
  42. Hunnius, S., & Bekkering, H. (2010). The early development of object knowledge: A study of infants' visual anticipations during action observation. Developmental Psychology, 46(2), 446-454. DOI: https://doi.org/10.1037/a0016543
  43. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14(1), S103-S109. DOI: https://doi.org/10.1006/ nimg.2001.0832
  44. Johnson, M. H., & De Haan, M. (2015). Developmental cognitive neuroscience: an introduction. Retrieved from https://www.wiley.com/ en-us/Developmental +Cognitive+ Neuroscience% 3A+An+Introduction% 2C+4th+Edition-p-9781118938089
  45. Jusczyk, P. W. (1997). Finding and Remembering Words. Current Directions in Psychological Science, 6(6), 170-174. DOI: https://doi.org/10.1111/1467-8721. ep10772947
  46. Kaduk, K., Bakker, M., Juvrud, J., Gredebäck, G., Westermann, G., Lunn, J., & Reid, V. M. (2016). Semantic processing of actions at 9 months is linked to language proficiency at 9 and 18 months. Journal of Experimental Child Psychology, 151, 96-108. DOI: https://doi.org/10.1016/j.jecp.2016.02.003
  47. Kim, A., & Osterhout, L. (2005). The independence of combinatory semantic processing: Evidence from event-related potentials. Journal of Memory and Language, 52(2), 205-225. DOI: https://doi. org/10.1016/j.jml.2004.10.002
  48. Knudsen, B., Henning, A., Wunsch, K., Weigelt, M., & Aschersleben, G. (2012). The End-State Comfort Effect in 3-to 8-Year-Old Children in Two Object Manipulation Tasks. Frontiers in Psychology, 3, 445. DOI: https://doi.org/10.3389/fpsyg.2012.00445
  49. Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621-647. DOI: https://doi. org/10.1146/annurev.psych.093008.131123
  50. Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307(5947), 161-163. DOI: https:// doi.org/10.1038/307161a0
  51. Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior: The hixon-symposium (pp. 112-147). New York: Wiley.
  52. Leroy-Gourhan, A. (1964). Le Geste et la Parole. Paris.
  53. Leshinskaya, A., & Caramazza, A. (2016). For a cognitive neuroscience of concepts: Moving beyond the grounding issue. Psychonomic Bulletin & Review, 23(4), 991-1001. DOI: https://doi.org/10.3758/ s13423-015-0870-z
  54. Lieven, E., Behrens, H., Speares, J., & Tomasello, M. (2003). Early syntactic creativity: a usage-based approach. Journal of Child Language, 30(2), 333- 70. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/12846301. DOI: https://doi.org/10.1017/ S0305000903005592
  55. Maffongelli, L., Antognini, K., & Daum, M. M. (2018). Syntactical regularities of action sequences in the infant brain: When structure matters. Developmental Science, (in press). DOI: https://doi.org/10.1111/ desc.12682
  56. Maffongelli, L., Bartoli, E., Sammler, D., Kölsch, S., Campus, C., Olivier, E., D'Ausilio, A., et al. (2015). Distinct brain signatures of content and structure violation during action observation. Neuropsychologia, 75. DOI: https://doi.org/10.1016/j. neuropsychologia.2015.05.020
  57. Magill, R. A. (2001). Augmented feedback in motor skill acquisition. In C. M. Singer, N. R. Hausenbas, & H. A. Janelle (Eds.). New York: John Wiley and Sos.
  58. Mandel, D. R., Nelson, D. G. K., & Jusczyk, P. W. (1996). Infants remember the order of words in a spoken sentence. Cognitive Development 11(2): 181-196. Retrieved from https://www.infona.pl/resource/ bwmeta1.element.elsevier-affd0e81-bfd2-3cc8- 82c2-396ddf2d95e3. DOI: https://doi. org/10.1016/ S0885-2014(96)90002-7
  59. Mandler, J. M. (1988). How to build a baby: On the development of an accessible representational system. Cognitive Development, 3(2), 113-136. DOI: https:// doi.org/10.1016/0885-2014(88)90015-9
  60. Marshall, P. J., & Meltzoff, A. N. (2011). Neural mirroring systems: Exploring the EEG mu rhythm in human infancy. Developmental Cognitive Neuroscience, 1(2), 110-123. DOI: https://doi.org/10.1016/j.dcn.2010. 09.001
  61. Martins, M. D., & Fitch, W. T. (2015). Do we represent intentional action as recursively embedded? The answer must be empirical. A comment on Vicari and Adenzato (2014). Consciousness and Cognition, 38, 16-21. DOI: https://doi.org/10.1016/j.concog.2015.10.003
  62. Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48(7), 788-804. DOI: https://doi.org/10.1016/j.cortex. 2010. 11.002
  63. Meyer, M., Braukmann, R., Stapel, J. C., Bekkering, H., & Hunnius, S. (2016). Monitoring others' errors: The role of the motor system in early childhood and adulthood. British Journal of Developmental Psychology, 34(1), 66-85. DOI: https://doi.org/10.1111/bjdp.12101
  64. Moro, A. (2014). Response to Pulvermüller: the syntax of actions and other metaphors. Trends in Cognitive Sciences, 18(5), 221. DOI: https://doi.org/10.1016/j. tics.2014.01.012
  65. Ní Choisdealbha, Á., & Reid, V. (2014). The developmental cognitive neuroscience of action: semantics, motor resonance and social processing. Experimental Brain Research, 232(6), 1585-1597. DOI: https://doi.org/10. 1007/s00221-014-3924-y
  66. Pastra, K., & Aloimonos, Y. (2012). The minimalist grammar of action. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1585), 103- 117. DOI: https://doi.org/10.1098/rstb.2011.0123
  67. Paulus, M. (2011). How infants relate looker and object: evidence for a perceptual learning account of gaze following in infancy. Developmental Science, 14(6), 1301-1310. DOI: https://doi. org/10.1111/j.1467-7687.2011.01076.x Paulus, M. (2016). The development of action planning in a joint action context. Developmental Psychology, 52(7), 1052-1063. DOI: https://doi.org/10.1037/ dev0000139
  68. Paulus, M., Hunnius, S., & Bekkering, H. (2011). Can 14-to 20-month-old children learn that a tool serves multiple purposes? A developmental study on children's action goal prediction. Vision Research, 51(8), 955-960. DOI: https://doi.org/10.1016/j. visres.2010.12.012
  69. Pazzaglia, M., Smania, N., Corato, E., & Aglioti, S. M. (2008). Neural underpinnings of gesture discrimination in patients with limb apraxia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(12), 3030-41. DOI: https://doi.org/10.1523/JNEUROSCI.5748-07.2008
  70. Perani, D., Cappa, S. F., Schnur, T., Tettamanti, M., Collina, S., Rosa, M. M., & Fazio, F. (1999). The neural correlates of verb and noun processing a PET study. Brain, 122(12), 2337-2344. DOI: https://doi. org/10.1093/brain/122.12.2337
  71. Pezzulo, G., Donnarumma, F., Dindo, H., D'Ausilio, A., Konvalinka, I., & Castelfranchi, C. (2018). The body talks: Sensorimotor communication and its brain and kinematic signatures. Physics of Life Reviews. DOI: https://doi.org/10.1016/j.plrev.2018.06.014
  72. Phillips, C., Kazanina, N., & Abada, S. H. (2005). ERP effects of the processing of syntactic long- distance dependencies. Cognitive Brain Research, 22(3), 407-428. DOI: https://doi.org/10.1016/j. cogbrainres.2004.09.012
  73. Porter, G., Troscianko, T., & Gilchrist, I. D. (2007). Effort during visual search and counting: Insights from pupillometry. The Quarterly Journal of Experimental Psychology, 60(2), 211-229. DOI: https://doi. org/10.1080/17470210600673818
  74. Pulvermüller, F. (2014). The syntax of action. Trends in Cognitive Sciences, 18(5), 219-20. DOI: https://doi. org/10.1016/j.tics.2014.01.001
  75. Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for language. Nature Reviews. Neuroscience, 11(5), 351-60. DOI: https://doi.org/10.1038/nrn2811
  76. Reid, V. M., Csibra, G., Belsky, J., & Johnson, M. H. (2007). Neural correlates of the perception of goal-directed action in infants. Acta Psychologica, 124(1), 129-138. DOI: https://doi.org/10.1016/j.actpsy.2006.09.010
  77. Reid, V. M., Hoehl, S., Grigutsch, M., Groendahl, A., Parise, E., & Striano, T. (2009). The neural correlates of infant and adult goal prediction: Evidence for semantic processing systems. Developmental Psychology, 45(3), 620-629. DOI: https://doi.org/10. 1037/a0015209
  78. Reid, V. M., & Striano, T. (2008). N400 involvement in the processing of action sequences. Neuroscience Letters, 433(2), 93-97. DOI: https://doi.org/10.1016/j. neulet.2007.12.066
  79. Repetto, C., Colombo, B., & Riva, G. (2012). The link between action and language: recent findings and future perspectives. Biolinguistics, 6(3-4), 462-474.
  80. Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188-94. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/9610880. DOI: https://doi.org/10.1016/ S0166-2236(98)01260-0
  81. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-92. DOI: https://doi.org/10.1146/annurev.neuro.27.
  82. Saylor, M. M., Baldwin, D. A., Baird, J. A., & LaBounty, J. (2007). Infants' on-line segmentation of dynamic human action. Journal of Cognition and Development, 8(1), 113-128. DOI: https://doi. org/10.1080/15248370709336996
  83. Schipke, C. S., Knoll, L. J., Friederici, A., & Oberecker, R. (2012). Preschool children's interpretation of object- initial sentences: Neural correlates of their behavioral performance. Developmental Science, 15(6), 762-774. DOI: https://doi.org/10.1111/j.1467-7687.2012.01167.x
  84. Sirigu, A., Cohen, L., Zalla, T., Eeckhout, P., Van Grafman, J., Agid, Y., Neuroscience, C., et al. (1998). Distinct frontal regions for processing sentence syntax and story grammar. Cortex, 1, 771-778. DOI: https://doi.org/10.1016/S0010-9452(08)70780-9
  85. Stapel, J. C., Hunnius, S., van Elk, M., & Bekkering, H. (2010). Motor activation during observation of unusual versus ordinary actions in infancy. Social Neuroscience, 5(5-6), 451-460. DOI: https://doi.org/10.1080/1747 0919.2010.490667
  86. Tabor, W., Galantucci, B., & Richardson, D. (2004). Effects of merely local syntactic coherence on sentence processing. Journal of Memory and Language, 50(4), 355-370. DOI: https://doi.org/10.1016/j. jml.2004.01.001
  87. Tettamanti, M., Alkadhi, H., Moro, A., Perani, D., Kollias, S., & Weniger, D. (2002). Neural correlates for the acquisition of natural language syntax. NeuroImage, 17(2), 700-9. DOI: https://doi. org/10.1006/nimg.2002.1201
  88. van Schie, H. T., Toni, I., & Bekkering, H. (2006). Comparable mechanisms for action and language: Neural systems behind intentions, goals, and means. Cortex, 42(4), 495-498. DOI: https://doi.org/10.1016/ S0010-9452(08)70385-X
  89. Vicari, G., & Adenzato, M. (2014). Is recursion language- specific? Evidence of recursive mechanisms in the structure of intentional action. Consciousness and Cognition, 26, 169-88. DOI: https://doi.org/10.1016/j. concog.2014.03.010
  90. Want, S. C., & Harris, P. L. (2001). Learning from other people's mistakes: causal understanding in learning to use a tool. Child Development, 72(2), 431-43. DOI: https://doi.org/10.1111/1467-8624.00288
  91. Warneken, F., Steinwender, J., Hamann, K., & Tomasello, M. (2014). Young children's planning in a collaborative problem-solving task. Cognitive Development, 31, 48-58. DOI: https://doi.org/10. 1016/j.cogdev.2014.02.003
  92. Westermann, G., Mareschal, D., Johnson, M. H., Sirois, S., Spratling, M. W., & Thomas, M. S. C. (2007). Neuroconstructivism. Developmental Science, 10(1), 75-83. DOI: https://doi.org/10. 1111/j.1467-7687.2007.00567.x
  93. Whiten, A., Flynn, E., Brown, K., & Lee, T. (2006). Imitation of hierarchical action structure by young children. Developmental Science, 9(6), 574-82. DOI: https://doi.org/10.1111/j.1467-7687.2006.00535.x
  94. Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology. General, 130(1), 29-58. DOI: https://doi.org/10.1037//0096-3445. 130.1.29