Spontaneous recovery in dynamical networks
https://doi.org/10.1038/NPHYS2819Abstract
Much research has been carried out to explore the structural properties and vulnerability of complex networks. Of particular interest are abrupt dynamic events that cause networks to irreversibly fail. However, in many real-world phenomena, such as brain seizures in neuroscience or sudden market crashes in finance, after an inactive period of time a significant part of the damaged network is capable of spontaneously becoming active again. The process often occurs repeatedly. To model this marked network recovery, we examine the effect of local node recoveries and stochastic contiguous spreading, and find that they can lead to the spontaneous emergence of macroscopic ‘phase-flipping’ phenomena. As the network is of finite size and is stochastic, the fraction of active nodes z switches back and forth between the two network collective modes characterized by high network activity and low network activity. Furthermore, the system exhibits a strong hysteresis behaviour analogous to phase transitions near a critical point. We present real-world network data exhibiting phase switching behaviour in accord with the predictions of the model.
Key takeaways
AI
AI
- Spontaneous recovery in networks leads to phase-flipping phenomena characterized by high and low activity states.
- The model employs parameters p* and r to analyze internal and external failures in network dynamics.
- Numerical simulations reveal hysteresis behavior indicative of first-order phase transitions in network states.
- Real-world economic networks exhibit bimodal behavior in activity, supporting the model's predictions.
- Average lifetimes in network states exponentially increase with system size, confirming theoretical results.
References (31)
- Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440-442 (1998).
- Faloutsos, M., Faloutsos, P. & Faloutsos, C. On power-law relationships of the Internet topology. Comput. Commun. Rev. 29, 251-262 (1999).
- Barabási, A-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509-512 (1999).
- Adamic, L. & Huberman, B. A. Internet: Growth dynamics of the world-wide web. Nature 401, 131-131 (1999).
- Krapivsky, P. L., Redner, S. & Leyraz, F. Connectivity of growing random networks. Phys. Rev. Lett. 85, 4629-4632 (2000).
- Milo, R. et al. Network motifs: Simple building blocks of complex networks. Science 298, 824-827 (2002).
- Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).
- Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 167-256 (2003).
- Garlaschelli, D., Caldarelli, G. & Pietronero, L. Universal scaling relations in food webs. Nature 423, 165-168 (2003).
- Albert, R. & Barabási, A-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47-97 (2002).
- NATURE PHYSICS | VOL 10 | JANUARY 2014 | www.nature.com/naturephysics
- Albert, R., Jeong, H. & Barabási, A. L. Error and attack tolerance of complex networks. Nature 406, 378-382 (2000).
- Schneider, C. M., Moreira, A. A., Andrade, J. S. Jr, Havlin, S. & Herrmann, H. J. Mitigation of malicious attacks on networks. Proc. Natl Acad. Sci. USA 108, 3838-3841 (2011).
- Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. Resilience of the Internet to random breakdowns. Phys. Rev. Lett. 85, 4626-4628 (2000).
- Buldyrev, S. V. et al. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025-1028 (2010).
- Gao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011).
- Parshani, R., Buldyrev, S. V. & Havlin, S. Critical effect of dependency groups on the function of networks. Proc. Natl Acad. Sci. USA 108, 1007-1010 (2011).
- Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nature Phys. 8, 40-48 (2012).
- Vespignani, A. Modeling dynamical processes in complex socio-technical systems. Nature Phys. 8, 32-39 (2012).
- Schlapfer, M. & Shapiro, J. L. in Complex Sciences: Proc. First Int. Conf. (ed. Zhou, J.) 2127-2138 (Springer, 2009).
- Watts, D. J. A simple model of global cascades on random networks. Proc. Natl Acad. Sci. USA 99, 5766-5771 (2002).
- Gleeson, J. P. & Cahalane, D. J. Noise and Stochastics in Complex Systems and Finance 66010W (Proc. SPIE, Vol. 6601, 2007).
- Erdős, P. & Renyi, A. On random graphs. I. Publ. Math. 6, 290-297 (1959).
- Dorogovtsev, S. N. & Goltsev, A. V. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275-1335 (2008).
- Bak, P., Chen, K. & Tang, C. A forest-fire model and some thoughts on turbulence. Phys. Lett. A 147, 297-300 (1990).
- Drossel, B. & Schwabl, F. Forest-fire model with immune trees. Physica A 199, 183-197 (1993).
- Ding, F. et al. Direct molecular dynamics observation of protein folding transition state ensemble. Biophys. J. 83, 3525-3532 (2002).
- Kesselring, T. A. et al. Finite-size scaling investigation of the liquid-liquid critical point in ST2 water and its stability with respect to crystallization. J. Chem. Phys. 138, 244506 (2013).
- Kenett, D. Y. et al. Index cohesive force analysis reveals that the US market became prone to systemic collapses since 2002. PLoS ONE 6, e19378 (2011).
- Barunik, J. & Vosvrda, M. Can a stochastic cusp catastrophe model explain stock market crashes? J. Econ. Dynam. Control 33, 1824-1836 (2009).
- Blanchard, O. J. & Summers, L. H. Hysteresis and the European unemployment problem. NBER Macroecon. Annu. 1, 15-90 (1986).