Academia.eduAcademia.edu

Outline

New source technologies and their impact on future light sources

2010, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

https://doi.org/10.1016/J.NIMA.2010.06.100

Abstract

Emerging technologies are critically evaluated for their feasibility in future light sources. We consider both new technologies for electron beam generation and acceleration suitable for X-ray free-electron lasers (FELs), as well as alternative photon generation technologies including the relatively mature inverse Compton scattering and laser high-harmonic generation. Laser-driven plasma wakefield acceleration is the most advanced of the novel acceleration technologies, and may be suitable to generate electron beams for X-ray FELs in a decade. We provide research recommendations to achieve the needed parameters for driving future light sources, including necessary advances in laser technology.

Key takeaways
sparkles

AI

  1. Laser-driven plasma wakefield acceleration (LPA) shows promise for generating 10 GeV electron beams within 5 years.
  2. Emerging technologies like LPA and PWFA can significantly reduce the cost and size of future light sources.
  3. Research recommends advancements in laser technology crucial for developing compact X-ray sources.
  4. Inverse Compton scattering (ICS) offers a cost-effective alternative for producing X-ray sources with ultrashort pulses.
  5. Next-generation light sources need 3-4 orders of magnitude increase in average power for ultrafast laser systems.

FAQs

sparkles

AI

What technological advancements enable compact electron generation in light sources?add

Emerging laser-driven plasma and electron-beam driven plasma technologies can achieve accelerating gradients of 10-100 GV/m, enabling compact and cost-effective electron generation for light sources.

How do plasma-based accelerators improve upon traditional particle accelerators?add

The study reveals that laser plasma accelerators (LPAs) achieve gradients on the order of 100 GV/m, three orders of magnitude higher than conventional accelerators, facilitating compact designs.

What are the expected impacts of PWFA on future X-ray facilities?add

Plasma wakefield acceleration has demonstrated energy gains exceeding 40 GeV, enabling potential integration as a compact 'afterburner' to boost energy in conventional linacs for X-ray facilities.

Which alternative photon generation techniques are discussed alongside FELs?add

The paper reviews inverse Compton scattering (ICS) and laser high-harmonic generation (HHG) as viable alternatives, capable of offering different performance profiles while reducing costs significantly.

What challenges remain for laser-induced acceleration technologies in practical applications?add

Key issues include achieving high average power, laser pulse stability, and refining emittance and energy spread of electron beams to make advanced acceleration methods viable in light sources.

References (62)

  1. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43 (1979) 267.
  2. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81 (2009) 1229.
  3. W. Leemans, E. Esarey, Physics Today 63 (3) (2009) 44.
  4. T. Plettner, R. Byer, E. Colby, B. Cowan, C. Sears, J. Spencer, R. Siemann, PR-STAB 8 (2005) 121301.
  5. P. Chen, J.M. Dawson, R.W. Huff, T. Katsouleas, Phys. Rev. Lett. 64 (1985) 693.
  6. I. Blumenfeld, C.E. Clayton, F.J. Decker, M.J. Hogan, C. Huang, R. Ischebeck, R. Iverson, C. Joshi, T. Katsouleas, N. Kirby, W. Lu, K.A. Marsh, W.B. Mori, P. Muggli, E. Oz, R.H. Siemann, D. Walz, M. Zhou, Nature 445 (2006) 741.
  7. L.M. Brown, R.P. Feymann, Phys. Rev. 85 (2) (1952) 231.
  8. W.J. Brown, F.V. Hartemann, PR-STAB 7 (2004) 060703.
  9. P.B. Corkum, Phys. Rev. Lett. 71 (1993) 1994.
  10. M. Lewenstein, P. Balcou, et al., Phys. Rev. A 49 (1994) 2117.
  11. D.H. Whittum, A.M. Sessler, J.M. Dawson, Phys. Rev. Lett. 64 (1990) 2511.
  12. A. Rousse, K.T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, D. Hulin, Phys. Rev. Lett. 93 (2004) 135005.
  13. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Toth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, Nat. Phys. 2 (2006) 696.
  14. C.G.R. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431 (7008) (2004) 538.
  15. F. Albert, R. Shah, K.T. Phuoc, R. Fitour, F. Burgy, J.-P. Rousseau, A. Tafzi, D. Douillet, T. Lefrou, A. Rousse, Phys. Rev. E 77 (2008) 056402.
  16. HHG seeding has been demonstrated at SPARC in the VUV (67 nm), L. Giannessi, Personal communication.
  17. C.B. Schroeder, W.M. Fawley, F. Gruner, M. Bakeman, K. Nakamura, K.E. Robinson, C. Toth, E. Esarey, W.P. Leemans, Free-electron laser driven by the LBNL laser- plasma accelerator, in: C.B. Schroeder, E. Esarey, W. Leemans (Eds.), Advanced Accelerator Concepts, vol. 1086, AIP, New York2009, pp. 637-642.
  18. Fuchs, et al., Nat. Phys. 5 (2009) 826.
  19. J.B. Rosenzweig, D.B. Cline, B. Cole, H. Figueroa, W. Gai, R. Konecny, J. Norem, P. Schoessow, J. Simpson, Phys. Rev. Lett. 61 (1988) 98.
  20. T. Katsouleas, Phys. Rev. A 33 (1986) 2056.
  21. C. Huang, et al., Phys. Rev. Lett. 99 (2007) 255001.
  22. C. Huang, et al., J. Comput. Phys. 217 (2006) 658.
  23. R. Ruth et al., Test accelerator for the next linear collider, SLAC PUB 6293, 1993.
  24. A.M. Sessler, D.H. Whittum, L.-H. Yu, Phys. Rev. Lett. 68 (1992) 309.
  25. C. Sears, E. Colby, B. Cowan, R. Siemann, J. Spencer, R. Byer, T. Plettner, PRL 95 (2005) 194801.
  26. C. Sears, E. Colby, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. Siemann, J. Spencer, D. Walz, T. Plettner, R. Byer, PRST-AB 11 (2008) 061301.
  27. C. Sears, E. Colby, R. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. Siemann, J. Spencer, D. Walz, T. Plettner, R. Byer, PRST-AB 11 (2008) 101301.
  28. X. Lin, PRST-AB 4 (2001) 051301.
  29. B. Cowan, PRST-AB 6 (2003) 101301.
  30. B. Cowan, PRST-AB 11 (2008) 011301.
  31. T. Plettner, P. Lu, R. Byer, PRST-AB 9 (2006) 111301.
  32. J. Rosenzweig, A. Murokh, C. Pellegrini, Phys. Rev. Lett. 74 (1995) 2467.
  33. C. McGuinness, E. Colby, R. Byer, J. Mod. Opt. 19 (2009).
  34. N. Na, R. Siemann, R. Byer, PRST-AB 8 (2005) 031301.
  35. T. Plettner, R. Byer, PRST-AB 11 (2008) 030704.
  36. P. Hommelhoff, C. Kealhofer, M. Kasevich, Mod. Trends Laser Phys. 19 (4) (2009) 736ff.
  37. E. Colby, et al., An electron source for a laser accelerator, in Proceedings of the PAC2005, 2005, p. 2101ff.
  38. D. Xiang, G. Stupakov, Phys. Rev. ST Accel. Beams 12 (2009) 030702.
  39. W.S. Graves, W.J. Brown, F.X. Kaertner, D.E. Moncton, Nucl. Instr. and Meth. 608 (i.1) (2009) s103.
  40. W.J. Brown, F.V. Hartemann, AIP Conf. Proc. 737 (2004) 839.
  41. J.B. Rosenzweig, O. Williams, Int. J. Mod. Phys. A 23 (2007) 4333.
  42. G.A. Krafft, Phys. Rev. Lett. 92 (2004) 204802.
  43. D.C. Nguyen, N.A. Moody, G. Bolme, L.J. Castellano, C.E. Heath, F.L. Krawczyk, S.I. Kwon, R. McCrady, F.A. Martinez, P. Marroquin, M. Prokop, P. Roybal, W.T. Roybal, T.L. Tomei, P.A. Torrez, W.M. Tuzel, L.M. Young, T. Zaugg, Endpoint energy measurements of field emission current in a CW normal- conducting RF injector, submitted for publication to PRST-AB (2010).
  44. K. Baptiste, J. Corlett, S. Kwiatkowski, S. Lidia, J. Qiang, F. Sannibale, K. Sonnad, J. Staples, S. Virostek, R. Wells, Nucl. Instr. and Meth. 599 (2009) 9.
  45. A. Burrill, I. Ben-Zvi, R. Calaga, X. Chang, H. Hahn, D. Kayran, J. Kewisch, V. Litvinenko, G. McIntyre, A. Nicoletti, D. Pate, J. Rank, J. Scaduto, R. Tao, K. Wu, A. Zaltsman, Y. Zhao, H. Bluem, M. Cole, M. Falletta, D. Holmes, E. Peterson, J. Rathke, T. Schultheiss, A. Todd, R. Wong, J. Lewellen, W. Funk, P. Kneisel, L. Phillips, J. Preble, D. Janssen, V. Nguyen-Tuong, Nucl. Instr. and Meth. 557 (2006) 75.
  46. C. Hernandez-Garcia et al., Performance and modeling of the JLAB IR FEL upgrade injector, in: Proceedings of the 26th International Free-electron Laser Conference, Trieste, Italy, 2004, p.558.
  47. J.B. Rosenzweig, M.P. Dunning, E. Hemsing, G. Marcus, P. Musumeci, A. Marinelli, M. Ferrario, Quasicrystalline beam formation in RF photoinjec- tors, in: Proceedings of the 30th International Free-Electron Laser Conference, Gyeongju, Korea, 2008.
  48. Kulagin, et al., Phys. Rev. Lett. 99 (2007) 124801.
  49. O. Klimo, J. Psikal, J. Limpouch, V.T. Tikhonchuk, PRST-AB 11 (2008) 031301.
  50. J.-F. Hergott, M. Kovacev, et al., Phys. Rev. A 66 (2002) 021801(R).
  51. E. Takahashi, Y. Nabekawa, et al., IEEE J. STQE 10 (2004) 1315.
  52. M. Schn ürer, Spielmann Ch., et al., Phys. Rev. Lett. 80 (1998) 3236.
  53. Z. Chang, A. Rundquist, et al., Phys. Rev. Lett. 79 (1997) 2967.
  54. I.J. Kim, C.M. Kim, et al., Phys. Rev. Lett. 94 (2005) 243901-1-4.
  55. E.J. Takahashi, et al., PRL 101 (2008) 253901.
  56. H.T. Kim, I.J. Kim, et al., IEEE J. STQE 10 (2004) 1329.
  57. E. Gibson, X. Zhang, et al., IEEE J. STQE 10 (2004) 1339.
  58. M. Nisoli, E. Priori, et al., Phys. Rev. Lett. 88 (2002) 33902-1.
  59. S. Kazamias, D. Douillet, et al., Phys Rev. Lett. 90 (2003) 193901-1.
  60. D. Dowell et al., Cathode R&D for future light sources, Nucl. Instr. and Meth., submited.
  61. N. Moody, et al., J. Appl. Phys. 102 (2007) 104901.
  62. See for example A. Tunnermann, J. Limpert, S. Nolte, Ultrashort pulse fiber lasers and amplifiers, in: Femtosecond Technology for Technical and Medical Applications, Springer, Berlin, ISSN 1437-0859, 2004.