Recent developments on compactifications of stacks of shtukas
2023
Abstract
This text presents an overview of recent developments on compactifications of moduli stacks of shtukas. The aim is to explain how to tackle the problem of compactifying stacks of shtukas by two different methods: the Langton semistable reduction and the Geometric Invariant Theory.
References (31)
- E. Arasteh Rad. and U. Hartl. Uniformizing the moduli stacks of global G- shtukas. Int. Math. Res. Not. IMRN, (21):16121-16192, 2021.
- A. Beilinson and V. Drinfeld. Quantization of Hitchin's integrable system and Hecke eigensheaves. available at http://www.math.uchicago.edu/∼mitya/langlands/hitchin/BD-hitchin.pdf, 1999.
- C. De Concini and C. Procesi. Complete symmetric varieties. In Invariant theory (Montecatini, 1982), volume 996 of Lecture Notes in Math., pages 1-44. 1983.
- V. Drinfeld. Elliptic modules. Mat. Sb. (N.S.), 94(136):594-627, 656, 1974.
- V. Drinfeld. Elliptic modules. II. Mat. Sb. (N.S.), 102(144)(2):182-194, 325, 1977.
- V. Drinfeld. Varieties of modules of F -sheaves. Functional Analysis and its Applications, 21:107-122, 1987.
- V. Drinfeld. Proof of the Petersson conjecture for GL(2) over a global field of characteristic p. Functional Analysis and its Applications, 22(1):28-43, 1988.
- V. Drinfeld. Cohomology of compactified manifolds of modules of F -sheaves of rank 2. Journal of Soviet Mathematics, 46:1789-1821, 1989.
- J. Heinloth. Semistable reduction for G-bundles on curves. J. Algebraic Geom., 17:167-183, 2008.
- J. Heinloth. Addendum to "Semistable reduction of G-bundles on curves". J. Algebraic Geom., 19(1):193-197, 2010.
- J. Heinloth. Lectures on the moduli stack of vector bundles on a curve. In Affine flag manifolds and principal bundles, Trends Math., pages 123-153. Birkhäuser/Springer Basel AG, Basel, 2010.
- L. Lafforgue. Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson. Astérisque, 243, 1997.
- L. Lafforgue. Une compactification des champs classifiant les chtoucas de Drin- feld. J. Amer. Math. Soc., 11:1001-1036, 1998.
- L. Lafforgue. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math., 147:1-241, 2002.
- L. Lafforgue. Cours à l'Institut Tata sur les chtoucas de Drinfeld et la corre- spondance de Langlands. prépublication de l'IHES, M/02/45, 2002.
- V. Lafforgue. Chtoucas pour les groupes réductifs et paramétrisation de Lang- lands globale. J. Amer. Math. Soc., 31(3):719-891, 2018.
- V. Lafforgue. Shtukas for reductive groups and Langlands correspon- dence for function fields. In Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. I. Plenary lectures, pages 635- 668. World Sci. Publ., Hackensack, NJ, 2018.
- S. Langton. Valuative criteria for families of vector bundles on algebraic vari- eties. Ann. of Math. (2), 101:88-110, 1975.
- E. Lau. On generalised D-shtukas. Dissertation, Bonner Mathematische Schriften [Bonn Mathematical Publications], Universitat Bonn, Mathematis- ches Institut, Bonn, 369, 2004.
- E. Lau. On degenerations of D-shtukas. Duke Math. J., 140:351-389, 2007.
- G. Laumon. Drinfeld shtukas. In Vector bundles on curves-new directions (Cetraro, 1995), volume 1649 of Lecture Notes in Math., pages 50-109. Springer, Berlin, 1997.
- G. Laumon and L. Moret-Bailly. Champs algébriques, volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Sur- veys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2000.
- G. Laumon, M. Rapoport, and U. Stuhler. D-elliptic sheaves and the Langlands correspondence. Invent. Math., 113:217-338, 1993.
- D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathe- matics and Related Areas (2)].
- F. Neumann. Algebraic stacks and moduli of vector bundles. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2009. 27o Colóquio Brasileiro de Matemática. [27th Brazilian Mathematics Colloquium].
- B.-C. Ngo. D-chtoucas de Drinfeld à modifications symétriques et identité de changement de base. Ann. Sci. Ecole Norm. Sup., 39:197-243, 2006.
- T. Ngo Dac. Compactification des champs de chtoucas et théorie géométrique des invariants. Astérisque, 313, +124 pp., 2007.
- T. Ngo Dac and Y. Varshavsky. On compactifications of stacks of shtukas. preprint, last version: August 2023, 2023.
- C. S. Seshadri. Space of unitary vector bundles on a compact Riemann surface. Ann. of Math. (2), 85:303-336, 1967.
- Y. Varshavsky. Moduli spaces of principal F -bundles. Selecta Math. (N.S.), 10(1):131-166, 2004.
- E. B. Vinberg On reductive algebraic semigroups. In Lie groups and Lie alge- bras: E. B. Dynkin's Seminar, volume 169 of Amer. Math. Soc. Transl. Ser. 2, pages 145-182. 1995.