Academia.eduAcademia.edu

Outline

A Fractal Eigenvector

2021, arXiv (Cornell University)

Abstract

The recursively-constructed family of Mandelbrot matrices Mn for n = 1, 2, . . . have nonnegative entries (indeed just 0 and 1, so each Mn can be called a binary matrix) and have eigenvalues whose negatives -λ = c give periodic orbits under the Mandelbrot iteration, namely z k = z 2 k-1 + c with z0 = 0, and are thus contained in the Mandelbrot set. By the Perron-Frobenius theorem, the matrices Mn have a dominant real positive eigenvalue, which we call ρn. This article examines the eigenvector belonging to that dominant eigenvalue and its fractal-like structure, and similarly examines (with less success) the dominant singular vectors of Mn from the singular value decomposition. This article seeks to explain a visual curiosity, namely that of Figure , where visible structures seem to repeat, slightly transformed, at smaller scales. But what do we mean by an "explanation?" What constitutes a mathematical explanation? By the way, those structures are not the result of rounding errors, in spite of our doing the computation only in standard hardware precision floating-point arithmetic. We will see a connection with the Mandelbrot set. After seeing the name Mandelbrot get involved, the reader might no longer be surprised that repeating transformed

References (19)

  1. Bini, D. A., Fiorentino, G. (2000). Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numer. Algorithms, 23(2): 127-173. doi.org/10.1023/a:1019199917103.
  2. Bini, D. A., Robol, L. (2014). Solving secular and polynomial equations: A multiprecision algorithm. J. Comput. Appl. Math, 272: 276-292. doi.org/10.1016/j.cam.2013.04.037.
  3. Boyd, J. P. (2014). Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Nu- merical Rootfinders, Perturbation Series, and Oracles. Philadelphia, PA: SIAM.
  4. Chan, E. Y. S. (2016). A comparison of solution methods for Mandelbrot-like polynomials. Master's thesis, Western University, London, Canada.
  5. Chan, E. Y. S., Corless, R. M., Gonzalez-Vega, L., Sendra, J. R., Sendra, J. (2019). Algebraic linearizations of matrix polynomials. Linear Algebra Appl, 563: 373-399. doi.org/doi.org/10.1016/j.laa.2018.10.028.
  6. Corless, R. M., Lawrence, P. W. (2013). The largest roots of the Mandelbrot polynomials. In: Bailey, D. H., Bauschke, H. H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J. D., Wolkowicz, H., eds., Computational and Analytical Mathematics. New York, NY: Springer, pp. 305-324.
  7. Davis, T. A. (2019). Algorithm 1000: Suitesparse:graphblas: Graph algorithms in the language of sparse linear algebra. ACM Trans. Math. Software, 45(4): 1-25. doi.org/10.1145/3322125.
  8. Dietzenbacher, E. (1988). Perturbations of matrices: A theorem on the Perron vector and its applications to input-output models. J. Economics, 48(4): 389-412. doi.org/10.1007/bf01227544.
  9. Eidelman, Y., Gohberg, I., Olshevsky, V. (2005). Eigenstructure of order-one-quasiseparable matrices. three-term and two-term recurrence relations. Linear Algebra Appl, 405: 1-40. doi.org/10.1016/j.laa.2005.02.039.
  10. Greenbaum, A., Li, R.-C., Overton, M. L. (2020). First-order perturbation theory for eigenvalues and eigenvectors. SIAM Rev, 62(2): 463-482. doi.org/10.1137/19m124784x.
  11. Hogben, L., ed. (2014). Handbook of Linear Algebra, 2nd ed. Boca Raton, FL: Taylor & Francis Group.
  12. MacCluer, C. R. (2000). The many proofs and applications of Perron's theorem. SIAM Rev, 42(3): 487- 498. doi.org/10.1137/s0036144599359449.
  13. Morton, P., Patel, P. (1994). The Galois theory of periodic points of polynomial maps. Proc. London Math. Soc. (3), 68(2): 225-263. doi.org/10.1112/plms/s3-68.2.225.
  14. OEIS Foundation Inc. (2021). The On-Line Encyclopedia of Integer Sequences. Published electronically at oeis.org.
  15. Poincaré, H. (1905). Science and Hypothesis. New York, NY: The Walter Scott Publishing Co., Ltd. en.wikisource.org/wiki/Science and Hypothesis.
  16. Schleicher, D. (2017). Internal addresses of the Mandelbrot set and Galois groups of polynomials. Arnold Math. J, 3(1): 1-35. doi.org/10.1007/s40598-016-0042-x.
  17. Shampine, L. F., Corless, R. M. (2000). Initial value problems for ODEs in problem solving environ- ments. J. Comput. Appl. Math, 125(1-2): 31-40. doi.org/10.1016/s0377-0427(00)00456-8.
  18. Tyaglov, M. (2017). Self-interlacing polynomials. Linear Algebra Appl, 535: 12-34. doi.org/10.1016/j.laa.2017.08.020.
  19. Vivaldi, F., Hatjispyros, S. (1992). Galois theory of periodic orbits of rational maps. Nonlinearity, 5(4): 961-978. doi.org/doi:10.1088/0951-7715/5/4/007.