Academia.eduAcademia.edu

Outline

Regional Manifold Learning for Disease Classification

2014, IEEE Transactions on Medical Imaging

https://doi.org/10.1109/TMI.2014.2305751

Abstract

While manifold learning from images itself has become widely used in medical image analysis, the accuracy of existing implementations suffers from viewing each image as a single data point. To address this issue, we parcellate images into regions and then separately learn the manifold for each region. We use the regional manifolds as low-dimensional descriptors of high-dimensional morphological image features, which are then fed into a classifier to identify regions affected by disease. We produce a single ensemble decision for each scan by the weighted combination of these regional classification results. Each weight is determined by the regional accuracy of detecting the disease. When applied to cardiac magnetic resonance imaging of 50 normal controls and 50 patients with reconstructive surgery of Tetralogy of Fallot, our method achieves significantly better classification accuracy than approaches learning a single manifold across the entire image domain.

References (65)

  1. Morcos P, Vick I, Wesley G, Sahn D, Jerosch-Herold M, Shurman A, Sheehan F. Correlation of right ventricular ejection fraction and tricuspid annular plane systolic excursion in Tetralogy of Fallot by magnetic resonance imaging. Int J Cardiovasc Imag. 2009; 25(3):263-270.
  2. Solarz D, Witt S, Glascock B, Jones F, Khoury P, Kimball T. Right ventricular strain rate and strain analysis in patients with repaired Tetralogy of Fallot: Possible interventricular septal compensation. J Am Soc Echocardiogr. 2004; 17(4):338-344. [PubMed: 15044867]
  3. Villafañe J, Feinstein JA, Jenkins KJ, Vincent RN, Walsh EP, Dubin AM, Geva T, Towbin JA, Cohen MS, Fraser C, Dearani J, Rosenthal D, Kaufman B, Graham TP. Hot topics in Tetralogy of Fallot. J Am Coll Cardiol. 2013; 23:2155-2166.
  4. Wald RM, Haber I, Wald R, Valente AM, Powell AJ, Geva T. Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired Tetralogy of Fallot. Circulation. 2009; 119(10):1370-1377. [PubMed: 19255342]
  5. Zhang H, Wahle A, Johnson RK, Scholz TD, Sonka M. 4-D cardiac MR image analysis: Left and right ventricular morphology and function. IEEE Trans Med Imag. Feb; 2010 29(2):350-364.
  6. Bernardis, E., Konukoglu, E., Ou, Y., Metaxas, DN., Desjardins, B., Pohl, KM. Medical Image Computing and Computer Assisted Intervention (MICCAI). Vol. 7511. New York: Springer; Temporal shape analysis via the spectral signature; p. 49-56.Lecture Notes in Computer
  7. Mansi, T., Durrleman, S., Bernhardt, B., Sermesant, M., Delingette, H., Voigt, I., Lurz, P., Taylor, A., Blanc, J., Boudjemline, Y., Pennec, X., Ayache, N. Medical Image Computing and Computer Assisted Intervention (MICCAI). Vol. 5761. New York: Springer; 2009. A statistical model of right ventricle in Tetralogy of Fallot for prediction of remodelling and therapy planning; p. 215-221.Lecture Notes in Computer Science
  8. Bove T, Vandekerckhove K, Devos D, Panzer J, De Groote K, De Wilde H, De Wolf D, De Backer J, Demulier L, François K. Functional analysis of the anatomical right ventricular components: Should assessment of right ventricular function after repair of Tetralogy of Fallot be refined? Eur J Cardio- Thoracic Surg. 2013:1-7.
  9. Ashburner J, Friston KJ. Voxel-based morphometry-The methods. NeuroImage. 2000; 11:805- 821. [PubMed: 10860804]
  10. Thompson P, Giedd J, Woods R, MacDonald D, Evans A, Toga A. Growth patterns in the developing human brain detected using continuum-mechanical tensor mapping. Nature. 2000; 404:190-193. [PubMed: 10724172]
  11. Gaser C, Volz H, Kiebel S, Riehemann S, Sauer H. Detecting structural changes in whole brain based on nonlinear deformations: Application to schizophrenia research. NeuroImage. 1999; 10:107-113. [PubMed: 10417245]
  12. Thirion J, Calmon G. Deformation analysis to detect and quantify active lesions in 3D medical image sequences. IEEE Trans Med Imag. May; 1999 18(5):429-441.
  13. Leow A, Klunder A, JC, Toga A, Dale A, Bernstein P, Britson M, Gunter J, Ward C, Whitwell J, Borowski B, Fleisher A, Fox N, Harvey D, Kornak J, Schufff N, SC, AG, WM, Thompson P. Longitudinal stability ofMRI for mapping brain change using tensor-based morphometry. NeuroImage. 2006; 31:627-640. [PubMed: 16480900]
  14. Shen D, Davatzikos C. Very high-resolution morphometry using mass-preserving deformations and HAMMER elastic registration. NeuroImage. 2003; 18:28-41. [PubMed: 12507441]
  15. Li Y, Gong S, Liddell H. Recognising trajectories of facial identities using kernel discriminant analysis. Image Vis Comput. 2003; 21:1077-1086.
  16. Vishwanathan SVN, Sun Z, Theera-Ampornpunt N, Varma M. Multiple kernel learning and the SMO algorithm. Adv Neural Inf Process Syst. 2010:3311-3325.
  17. Qian Z, Liu Q, Metaxas DN, Axel L. Identifying regional cardiac abnormalities from myocardial strains using nontracking-based strain estimation and spatio-temporal tensor analysis. IEEE Trans Med Imag. Dec; 2011 30(12):2017-2029.
  18. Punithakumar K, Ayed IB, Islam A, Goela A, Ross IG, Chong J, Li S. Regional heart motion abnormality detection: An information theoretic approach. Med Image Anal. 2013; 17:311-324. [PubMed: 23375719]
  19. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20:273-297.
  20. Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science. 2000; 290:2319-2323. [PubMed: 11125149]
  21. Peng H, Long F, Ding C. Feature selection based on mutual information: Criteria of max- dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. Aug; 2005 27(8):1226-1238. [PubMed: 16119262]
  22. Mitchell SC, Bosch JG, Lelieveldt BPF, van der Geest RJ, Reiber JHC, Sonka M. 3-D active appearance models: Segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imag. Sep; 2002 21(9):1167-1178.
  23. Sun, W., Çetin, M., Chan, RC., Reddy, VY., Holmvang, G., Chandar, V., Willsky, AS. Information Processing in Medical Imaging (IPMI). Vol. 3565. New York; Springer: 2005. Segmenting and tracking the left ventricle by learning the dynamics in cardiac images," in; p. 553-565.Lecture Notes in Computer Science
  24. Pohl K, Fisher J, Bouix S, Shenton M, McCarley R, Grimson W, Kikinis R, Wells W. Using the logarithm of odds to define a vector space on probabilistic atlases. Med Image Anal. 2007; 11(6): 465-477. [PubMed: 17698403]
  25. Milles J, van der Geest RJ, Herold MJ, Reiber JHC, Lelieveldt BPF. Fully automated motion correction in first-pass myocardial perfusion MR image sequences. IEEE Trans Med Imag. Nov; 2008 27(11):1611-1621.
  26. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000; 290:2323-2326. [PubMed: 11125150]
  27. Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computat. 2003; 15:1373-1396.
  28. Qu Y, Adam B, Thornquist M, Potter J, Thompson M, Yasui Y, Davis J, Schellhammer P, Cazares L, Clements M, Wright G, Feng Z. Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensionality data. Biometrics. 2003; 59:143-151. [PubMed: 12762451]
  29. Zhang QL, Souvenir R, Pless R. On manifold structure of cardiac MRI data: Application to segmentation," in. Comput Vis Pattern Recognit. 2006:1092-1098.
  30. Hamm J, Ye DH, Verma R, Davatzikos C. GRAM: A framework for geodesic registration on anatomical manifolds. Med Image Anal. 2010; 14:633-642. [PubMed: 20580597]
  31. Gerber S, Tasdizen T, Fletcher PT, Joshi SC, Whitaker RT. Manifold modeling for brain population analysis. Med Image Anal. 2010; 14:643-653. [PubMed: 20579930]
  32. Wolz R, Aljabar P, Hajnal JV, Lötjönen J, Rueckert D. Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Med Image Anal. 2012; 16:819-830. [PubMed: 22244037]
  33. Aljabar P, Wolz R, Srinivasan L, Counsell SJ, Rutherford MA, Edwards AD, Hajnal JV, Rueckert D. A combined manifold learning analysis of shape and appearance to characterize neonatal brain development. IEEE Trans Med Imag. Dec; 2011 30(12):2072-2086.
  34. Coifman R, Lafon S. Diffusion maps. Appl Computat Harmonic Anal. 2006; 21:5-30.
  35. Duchateau N, Craene MD, Piella G, Frangi AF. Constrained manifold learning for the characterization of pathological deviations from normality. Med Image Anal. 2012; 16:1532-1549. [PubMed: 22906821]
  36. Cardoso, MJ., Wolz, R., Modat, M., Fox, NC., Rueckert, D., Ourselin, S. Medical Image Computing and Computer Assisted Intervention (MICCAI). Vol. 7511. New York: Springer; 2012. Geodesic information flows; p. 262-270.Lecture Notes in Computer Science
  37. Ye, DH., Hamm, J., Kwon, D., Davatzikos, C., Pohl, KM. Medical Image Computing and Computer Assisted Intervention (MICCAI). Vol. 7512. New York: Springer; 2012. Regional manifold learning for deformable registration of brain MR Images; p. 131-138.Lecture Notes in Computer Science
  38. Ye, D., Hamm, J., Desjardins, B., Pohl, K. Medical Image Computing and Computer Assisted Intervention (MICCAI). Vol. 8151. New York: Springer; FLOOR: Fusing locally optimal registrations; p. 195-202.Lecture Notes in Computer Science
  39. Bhatia KK, Rao A, Price A, Wolz R, Hajnal J, Rueckert D. Hierarchical manifold learning for regional image analysis. IEEE Trans Med Imag. Feb; 2014 33(2):444-461.
  40. Cabezas M, Oliver A, Llado X, Freixenet J, Cuadra MB. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed. 2011; 104:158-177.
  41. Wolz R, Aljabar P, Hajnal JV, Hammers A, Rueckert D. Alzheimer's Disease Neuroimaging Initiative. LEAP: Learning embeddings for atlas propagation. NeuroImage. 2010; 49:1316-1325. [PubMed: 19815080]
  42. Jia H, Wu G, Wang Q, Shen D. ABSORB: Atlas building by self-organized registration and bundling. NeuroImage. 2010; 51:1057-1070. [PubMed: 20226255]
  43. Atrey PK, Hossain MA, Saddik AE, Kankanhalli MS. Multimodal fusion for multimedia analysis: A survey. Multimedia Syst. 2010; 16:345-379.
  44. Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst Mag. 2006; 6(3):21- 45.
  45. Spiewak M, Malek L, Petryka J, Mazurkiewicz L, Werys K, Biernacka E, Kowalski M, Hoffman P, Demkow M, Misko J, Ruzyllo W. Repaired Tetralogy of Fallot: Ratio of right ventricular volume to left ventricular volume as a marker of right ventricular dilatation. Radiology. 2012; 265:78-86. [PubMed: 22771877]
  46. Joshi S, Davis B, Jomier M, Gerig G. Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage. 2004; 23:S151-S160. [PubMed: 15501084]
  47. Vercauteren T, Pennec X, Perchant A, Ayache N. Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage. 2009; 45:S61-S72. [PubMed: 19041946]
  48. Miller GL, Teng SH, Thurston W, Vavasis SA. Separators for sphere-packing and nearest neighbor graphs. J ACM. 1997; 44:1-29.
  49. Cox, TF., Cox, MA. Multidimensional Scaling. London, U.K: Chapman Hall; 2001.
  50. Davies RH, Twining CJ, Cootes TF, Taylor CJ. Building 3-D statistical shape models by direct optimzation. IEEE Trans Med Imag. Apr; 2010 29(4):961-981.
  51. Helbing WA, de Roos A. Clinical applications of cardiac magnetic resonance imaging after repair of Tetralogy of Fallot. Pediatric Cardiol. 2000; 21:70-79.
  52. Lai WW, Gauvreau K, Rivera ES, Saleeb S, Powell AJ, Geva T. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int J Cardiovasc Imag. 2008; 24:691-698.
  53. Kim H, Ghahramani Z. Bayesian classifier combination. J Mach Learn Res. 2012; 22:619-627.
  54. de Silva V, Tenenbaum JB. Global versus local methods in nonlinear dimensionality reduction. Adv Neural Inf Process Syst. 2002:705-712.
  55. Duda R, Hart PE. Use of the Hough transformation to detect lines and curves in pictures. Commun ACM. 1972; 15:11-15.
  56. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4ITK: Improved N3 bias correction. IEEE Trans Med Imag. Jun; 2010 29(6):1310-1320.
  57. Cardiac atlas. [Online]. Available: http://atlas.scmr.org/
  58. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 2009; 45:S173-186. [PubMed: 19059349]
  59. Sundar, H., Shen, D., Biros, G., Xu, C., Davatzikos, C. Medical Image Computing and Computer Assisted Intervention (MICCAI). Vol. 4791. New York: Springer; 2007. Robust computation of mutual information using spatially adaptive meshes; p. 950-958.Lecture Notes in Computer Science
  60. A Practical Guide to Support Vector Classification. [Online]. Available: http:// www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
  61. Keerthi S, Lin C. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computat. 2003; 15:1667-1689.
  62. Dietterich TG. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computat. 1998; 10:1895-1923.
  63. Jolliffe, IT. Principal Component Analysis. NewYork: Springer; 1986.
  64. Convit A, de Asis J, de Leon M, Tarshish C, de Santi S, Rusinek H. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimers Disease. Neurobiol Aging. 2000; 21:19-26. [PubMed: 10794844]
  65. Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C. COMPARE: Classification of morphological patterns using adaptive regional elements. IEEE Trans Med Imag. Jan; 2007 26(1):93-105.