Academia.eduAcademia.edu

Outline

Towards rotation sensing with a single atomic clock

2016, Quantum Optics

https://doi.org/10.1117/12.2229878

Abstract

Towards rotation sensing with a single atomic clock. Proceedings of SPIE, 9900 (990007). pp. 1-14.

References (17)

  1. Lawrence, A., [Modern Inertial Technology], Springer, New York (1998).
  2. Simonelli, A., Belfi, J., Beverini, N. Carelli, G. Di Virgilio, A., Maccioni, E., De Luca, G. and Saccorotti, G., "First deep underground observation of rotational signals from an earthquake at teleseismic distance using a large ring laser gyroscope," arXiv:1601.05960 (2016).
  3. Will, C. M., "The confrontation between general relativity and experiment," Living Reviews in Relativity 9, 3 (2006).
  4. Clauser, J. F., "Ultra-high sensitivity acceleromters and gyroscopes using neutral atom matter-wave interferometry," Physica B 151, 262 (1988).
  5. Barrett, B., Geiger, R., Dutta, I., Meunier, M., Canuel, B., Gauguet, A., Bouyer, P. and Landragin, A., "The Sagnac effect: 20 years of development in matter-wave interferometry," Comptes Rendus Physique 15, 875 (2014).
  6. Gustavson, T. L., Landragin, A. and Kasevich, M. A., "Rotation sensing with a dual atom-interferometer Sagnac gyroscope," Classical and Quantum Gravity 17(12), 2385 (2000).
  7. Durfee, D. S., Shaham, Y. K. and Kasevich, M. A., "Long-Term Stability of an Area-Reversible Atom- Interferometer Sagnac Gyroscope," Physical Review Letters 97(24), 240801 (2006).
  8. Hafele, J. C. and Keating, R. E., "Around-the-World Atomic Clocks: Observed Relativistic Time Gains," Science 177, 166 (1972).
  9. Fernholz, T., Gerritsma, R., Krüger, P. and Spreeuw, R. J. C., "Dynamically controlled toroidal and ring-shaped magnetic traps," Physical Review A 75(6), 063406 (2007).
  10. Stevenson, R., Hush, M. R., Bishop, T., Lesanovsky, I and Fernholz, T., "Rotation Sensing with a Single Atomic Clock," Physical Review Letters 115(16), 163001 (2015).
  11. Cohen-Tannoudji, C., Dupont-Roc, J. and Grynberg, G., [Atom-Photon Interactions], Wiley, New York, (1992).
  12. Bloch, F. and Siegert, A. J. F., "Magnetic Resonance for Nonrotating Fields," Phys. Rev. 57(6), 522 (1940).
  13. Treutlein, P, Hommelhoff, P. Steinmetz, T., Hänsch, T. W., Reichel, J., "Coherence in Microchip Traps," Physical Review Letters 92(20), 203005 (2004).
  14. Lesanovsky, I. and von Klitzing, W., "Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps," Physical Review Letters 99(8), 083001 (2007).
  15. Fernholz, T. Gerritsma, R., Whitlock, S., Barb, I. and Spreeuw, R. J. C., "Fully permanent magnet atom chip for Bose-Einstein condensation," Physical Review A 77(3), 033409 (2008).
  16. Morinaga, M., "Circular Magneto-Optical Trap for Neutral Atoms," J. Phys. Soc. Japan 77, 104402 (2008).
  17. Sherson, J., Julsgaard, B. and Polzik, E. S., "Deterministic atom-light quantum interface," Advances in Atomic Molecular and Optical Physics 54, 81 (2006).