CR-Lightlike Submanifolds of Indefinite Para-Sasakian Manifolds
2016
Abstract
The purpose of this paper is to study a totally contact umbilical contact CRlightlike submanifolds of an indefinite para-Sasakian manifold. In this paper, we prove that a totally contact umbilical CR-lightlike submanifold is totally contact geodesic. Further, we obtain a necessary and sufficient condition for a CR-lightlike submanifold to be anti-invariant submanifold. Finally, we obtain the integrability condition of distributions and also characterize a contact CR-lightlike submanifold of indefinite para-Sasakian manifold to be a contact CR-lightlike product.
References (16)
- A. Bejancu, CR-submanifolds of a Kaehler manifold -I, Proc. Amer. Math. Soc. 69(1978), 135-142.
- A. Bejancu, CR-submanifolds of a Kaehler manifold -II, Trans. Amer. Math. Soc. 250(1979), 333-345.
- A. Bejancu, M. Kon, K. Yano, CR-submanifolds of complex space form, J. of Differential Geom. 16(1981), 137-145.
- A. Bejancu, K. L. Duggal, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and its Applications 364, Kluwer Academic Publishers, 1996.
- B. Y, Chen, CR-submanifolds of a Keahler manifold -I, J. of Differential Geom. 16(1981), 305-322.
- B. Y, Chen, CR-submanifolds of a Keahler manifold -II, J. of Differential Geom. 16(1981), 493-509.
- B. Sahin, Slant lightlike submanifolds of indefinite Hermitian manifolds, Balkan J. Geom. Appl.13(2008), no. 1, 107-119.
- B. Sahin and C. Yildirim, Slant lightlike submanifolds of indefinite Sasakian, Filomat 26(2012), no. 2, 277-287.
- K. L. Duggal, B. Sahin, Lightlike submanifolds of indefinite Sasakian manifolds, Int. J. Math. Math. Sci. Volume 2007, Artical ID 57585, 21 pages.
- M. Kobayashi, CR-submanifolds of a Sasakian manifolds, Tensor (N.S.)35(1981), 297- 307.
- M. Kon, K. Yano, Contact CR-submanifolds, Kodai Math. J. 5(1982), 238-252.
- M. Kon, K. Yano, Contact CR-submanifolds of a Kaehlerien and Sasakian manifolds, Birkhauser, Boston, 1983.
- R. Kumar, R. K. Nagaich, R. Rani, On sectional curvatures of (ǫ)-Sasakian manifolds, Int. J. Math. Math. Sci. vol 2007, Artical ID 93562, 8 pages.
- S. Maclane, Geometrical Mechanics II, Lecture Notes, University of Chicago, 1968.
- V. E. Nazaikinskii, V. E. Shatalov, B. Y. Sternin, Contact Geometry and Linear Differential Equation, De Gruter Exposition in Mathematics 6, Walter de Gruyter, 1992.
- V.I. Arnold, Contact geometry: the geometrical methods of Gibbs's thermodyanamo- dynamics, Proceeding of the Gibbs Symposium (New Haven, CT, 1989), 1990, 163-179.