Academia.eduAcademia.edu

Outline

CR-Lightlike Submanifolds of Indefinite Para-Sasakian Manifolds

2016

Abstract

The purpose of this paper is to study a totally contact umbilical contact CRlightlike submanifolds of an indefinite para-Sasakian manifold. In this paper, we prove that a totally contact umbilical CR-lightlike submanifold is totally contact geodesic. Further, we obtain a necessary and sufficient condition for a CR-lightlike submanifold to be anti-invariant submanifold. Finally, we obtain the integrability condition of distributions and also characterize a contact CR-lightlike submanifold of indefinite para-Sasakian manifold to be a contact CR-lightlike product.

References (16)

  1. A. Bejancu, CR-submanifolds of a Kaehler manifold -I, Proc. Amer. Math. Soc. 69(1978), 135-142.
  2. A. Bejancu, CR-submanifolds of a Kaehler manifold -II, Trans. Amer. Math. Soc. 250(1979), 333-345.
  3. A. Bejancu, M. Kon, K. Yano, CR-submanifolds of complex space form, J. of Differential Geom. 16(1981), 137-145.
  4. A. Bejancu, K. L. Duggal, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and its Applications 364, Kluwer Academic Publishers, 1996.
  5. B. Y, Chen, CR-submanifolds of a Keahler manifold -I, J. of Differential Geom. 16(1981), 305-322.
  6. B. Y, Chen, CR-submanifolds of a Keahler manifold -II, J. of Differential Geom. 16(1981), 493-509.
  7. B. Sahin, Slant lightlike submanifolds of indefinite Hermitian manifolds, Balkan J. Geom. Appl.13(2008), no. 1, 107-119.
  8. B. Sahin and C. Yildirim, Slant lightlike submanifolds of indefinite Sasakian, Filomat 26(2012), no. 2, 277-287.
  9. K. L. Duggal, B. Sahin, Lightlike submanifolds of indefinite Sasakian manifolds, Int. J. Math. Math. Sci. Volume 2007, Artical ID 57585, 21 pages.
  10. M. Kobayashi, CR-submanifolds of a Sasakian manifolds, Tensor (N.S.)35(1981), 297- 307.
  11. M. Kon, K. Yano, Contact CR-submanifolds, Kodai Math. J. 5(1982), 238-252.
  12. M. Kon, K. Yano, Contact CR-submanifolds of a Kaehlerien and Sasakian manifolds, Birkhauser, Boston, 1983.
  13. R. Kumar, R. K. Nagaich, R. Rani, On sectional curvatures of (ǫ)-Sasakian manifolds, Int. J. Math. Math. Sci. vol 2007, Artical ID 93562, 8 pages.
  14. S. Maclane, Geometrical Mechanics II, Lecture Notes, University of Chicago, 1968.
  15. V. E. Nazaikinskii, V. E. Shatalov, B. Y. Sternin, Contact Geometry and Linear Differential Equation, De Gruter Exposition in Mathematics 6, Walter de Gruyter, 1992.
  16. V.I. Arnold, Contact geometry: the geometrical methods of Gibbs's thermodyanamo- dynamics, Proceeding of the Gibbs Symposium (New Haven, CT, 1989), 1990, 163-179.