Academia.eduAcademia.edu

Outline

Adaptations of an RNA virus to increasing thermal stress

2017, bioRxiv (Cold Spring Harbor Laboratory)

https://doi.org/10.1371/JOURNAL.PONE.0189602

Abstract

Environments can change in incremental fashions, where a shift from one state to another occurs over multiple organismal generations. The rate of the environmental change is expected to influence how and how well populations adapt to the final environmental state. We used a model system, the lytic RNA bacteriophage Φ6, to investigate this question empirically. We evolved viruses for thermostability by exposing them to heat shocks that increased to a maximum temperature at different rates. We observed increases in the ability of many heat-shocked populations to survive high temperature heat shocks. On their first exposure to the highest temperature, populations that experienced a gradual increase in temperature had higher average survival than populations that experienced a rapid temperature increase. However, at the end of the experiment, neither the survival of populations at the highest temperature nor the number of mutations per population varied significantly according to the rate of thermal change. We also evaluated mutations from the endpoint populations for their effects on viral thermostability and growth. As expected, some mutations did increase viral thermostability. However, other mutations decreased thermostability but increased growth rate, suggesting that benefits of an increased replication rate may have sometimes outweighed the benefits of enhanced thermostability. Our study highlights the importance of considering the effects of multiple selective pressures, even in environments where a single factor changes.

References (63)

  1. Orr HA. The population genetics of adaptation: The distribution of factors fixed during adaptive evolu- tion. Evolution 1998; 52:935-49. https://doi.org/10.1111/j.1558-5646.1998.tb01823.x PMID: 28565213
  2. Fisher R.A. The genetical theory of natural selection. New York: Dover; 1958.
  3. Davis MB, Shaw RG. Range shifts and adaptive responses to quaternary climate change. Science 2001; 292:673-9. https://doi.org/10.1126/science.292.5517.673 PMID: 11326089
  4. Keeling CD, Whorf TP, Wahlen M, van der Plicht J. Interannual extremes in the rate of rise of atmo- spheric carbon dioxide since 1980. Nature 1995; 375:666-70.
  5. Warneke C, de Gouw JA, Holloway JS, Peischl J, Ryerson TB, Atlas E, et al. Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. J. Geophys. Res. 2012; 117:D00V17.
  6. Bello Y, Waxman D. Near-periodic substitution and the genetic variance induced by environmental change. J. Theor. Biol. 2009; 239:152-60.
  7. Collins S, de Meaux J, Acquisti C. Adaptive walks toward a moving optimum. Genetics 2007; 176:1089-99. https://doi.org/10.1534/genetics.107.072926 PMID: 17435242
  8. Kopp M, Hermisson J. Adaptation of a quantitative trait to a moving optimum. Genetics 2007; 176:715- 9. https://doi.org/10.1534/genetics.106.067215 PMID: 17409085
  9. Lynch M, Gabriel W, Wood AM. Adaptive and demographic responses of plankton populations to envi- ronmental change. Limnol. Oceanogr. 1991; 36:1301-12.
  10. Lynch M, Lande R. Evolution and extinction in response to environmental change. In: Kareiva PM, King- solver JG, Huey RB, editors. Biotic interactions and global change. Sunderland, Massachusetts: Sinauer; 1993. p. 234-50.
  11. Bu ¨rger R, Lynch M. Evolution and extinction in a changing environment: A quantitative-genetic analysis. Evolution 1995; 49:151-63. https://doi.org/10.1111/j.1558-5646.1995.tb05967.x PMID: 28593664
  12. Gomulkiewicz R, Houle D. Demographic and genetic constraints on evolution. Am. Nat. 2009; 174(6): E218-29. https://doi.org/10.1086/645086 PMID: 19821744
  13. Kopp M, Matuszewski S. Rapid evolution of quantitative traits: theoretical perspectives. Evol. Appl. 2014; 7:169-91. https://doi.org/10.1111/eva.12127 PMID: 24454555
  14. Pease CM, Lande R, Bull JJ. A model of population growth, dispersal and evolution in a changing envi- ronment. Ecology 1989; 70(6):1657-64.
  15. Broom M, Tang Q, Waxman D. Mathematical analysis of a model describing evolution of an asexual population in a changing environment. Math. Biosci. 2003; 186:93-108. PMID: 14527749
  16. Chevin L-M. Genetic constraints on adaptation to a changing environment. Evolution 2013; 67:708-21. https://doi.org/10.1111/j.1558-5646.2012.01809.x PMID: 23461322
  17. Gomulkiewicz R, Holt RD. When does evolution by natural selection prevent extinction? Evolution 1995; 49(1):201-7. https://doi.org/10.1111/j.1558-5646.1995.tb05971.x PMID: 28593677
  18. Bell G, Collins S. Adaptation, extinction and global change. Evol. Appl. 2008; 1:3-16. https://doi.org/10. 1111/j.1752-4571.2007.00011.x PMID: 25567487
  19. Perron GG, Gonzalez A, Buckling A. The rate of environmental change drives adaptation to an antibiotic sink. J. Evol. Biol. 2008; 21:1724-31. https://doi.org/10.1111/j.1420-9101.2008.01596.x PMID: 18681913
  20. Bell G, Gonzalez A. Adaptation and evolutionary rescue in metapopulations experiencing environmen- tal deterioration. Science 2011; 332:1327-30. https://doi.org/10.1126/science.1203105 PMID: 21659606
  21. Lindsey H, Gallie J, Taylor S, Kerr B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature 2013; 494:463-6. https://doi.org/10.1038/nature11879 PMID: 23395960
  22. Samani P, Bell G. Adaptation of experimental yeast populations to stressful conditions in relation to pop- ulation size. J. Evol. Biol. 2010; 23:791-6. https://doi.org/10.1111/j.1420-9101.2010.01945.x PMID: 20149025
  23. Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science 2016; 353:1147-51. https://doi.org/10.1126/science.aag0822 PMID: 27609891
  24. Collins S, de Meaux J. Adaptation to different rates of environmental change in Chlamydomonas. Evolu- tion 2008; 63:2952-65.
  25. Morley VJ, Mendiola SY, Turner PE. Rate of novel host invasion affects adaptability of evolving RNA virus lineages. Proc. R. Soc. B 2015; 282:20150801. https://doi.org/10.1098/rspb.2015.0801 PMID: 26246544
  26. Gorter FA, Aarts MMG, Zwaan BJ, de Visser JAGM. Dynamics of adaptation in experimental yeast pop- ulations exposed to gradual and abrupt change in heavy metal concentration. Am. Nat. 2016; 187:110- 9. https://doi.org/10.1086/684104 PMID: 27277407
  27. Gerrish PJ, Lenski RE. The fate of competing beneficial mutations in an asexual population. Genetica 1998; 102/103:127-44.
  28. Morley VJ, Turner PE. Dynamics of molecular evolution in RNA virus populations depend on sudden versus gradual environmental change. Evolution 2017; 71:872-83. https://doi.org/10.1111/evo.13193 PMID: 28121018
  29. Mindich L, MacKenzie G, Strassman J, McGraw T, Metzger S, Romantschuk M, et al. cDNA cloning of portions of the bacteriophage phi-6 genome. J. Bacteriol. 1985; 162:992-9. PMID: 3858275
  30. Mindich L. Reverse genetics of dsRNA bacteriophage phi-6. Adv. Vir. Res. 1999; 53:341-53.
  31. Mindich L, Qiao X, Onodera S, Gottlieb P, Frilander M. RNA structural requirements for stability and minus-strand synthesis in the dsRNA bacteriophage Φ6. Virology 1994; 202:258-63. https://doi.org/10. 1006/viro.1994.1341 PMID: 8009837
  32. Onodera S, Olkkonen VM, Gottlieb P, Strassman J, Qiao X, Bamford DH, et al. Construction of a trans- ducing virus from double-stranded RNA bacteriophage phi6: Establishment of carrier states in host cells. J. Virol. 1992; 66:190-6. PMID: 1727482
  33. Frilander M, Gottlieb P, Strassman J, Bamford DH, Mindich L. Dependence of minus-strand synthesis on complete genomic packaging in the double-stranded RNA bacteriophage ϕ6. J. Virol. 1992; 66:5013-7. PMID: 1629962
  34. Gottlieb P, Strassman J, Qiao X, Frilander M, Frucht A, Mindich L. In vitro packaging and replication of individual genomic segments of bacteriophage ϕ6 RNA. J. Virol. 1992; 66:2611-16. PMID: 1560520
  35. Onodera S, Qiao X, Gottlieb P, Strassman J, Frilander M, Mindich L. RNA structure and heterologous recombination in the double-stranded RNA bacteriophage Φ6. J Virol. 1993; 67(8):4914-22. PMID: 8331732
  36. Davanloo P, Rosenberg AH, Dunn JJ, Studier FW. Cloning and expression of the gene for bacterio- phage T7 RNA polymerase. PNAS 1984; 81:2035-39. PMID: 6371808
  37. Sun Y, Qiao X, Mindich L. Construction of carrier stat viruses with partial genomes of the segmented dsRNA bacteriophages. Virology 2004; 319:274-9. https://doi.org/10.1016/j.virol.2003.10.022 PMID: 14980487
  38. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983; 166:557- 80. PMID: 6345791
  39. Mindich L, Lehman J. Cell wall lysin as a component of the bacteriophage ɸ6 virion." J. Virol. 1979; 30:489-96. PMID: 469991
  40. Olkkonen VM, Ojala P, Bamford DH. Generation of infectious nucleocapsids by in vitro assembly of the shell protein onto the polymerase complex of the dsRNA bacteriophage ɸ6. J. Mol. Biol. 1991; 218:569- 81. PMID: 2016747
  41. Dessau M, Goldhill D, McBride RL, Turner PE, Modis Y. Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme. PLOS Genet. 2012; 8:e1003102. https://doi.org/10.1371/journal.pgen.1003102 PMID: 23209446
  42. McBride RC, Ogbunugafor CB, Turner PE. Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evol. Biol. 2008; 8:231-45. https://doi.org/10.1186/1471-2148-8-231 PMID: 18694497
  43. Goldhill D, Lee A, Williams ESCP, Turner PE. Evolvability and robustness in populations of RNA virus ϕ6. Front. Microbiol. 2014; 5:35. https://doi.org/10.3389/fmicb.2014.00035 PMID: 24550904
  44. Hao Y-Q, Brockhurst MA, Petchey OL, Zhang Q-G. Evolutionary rescue can be impeded by temporary environmental amelioration. Ecol. Lett. 2015; 18:892-8. https://doi.org/10.1111/ele.12465 PMID: 26119065
  45. Wahl LM, Gerrish PJ, Saika-Vovoid I. Evaluating the impact of population bottlenecks in experimental evolution. Genetics 2002; 162:961-71. PMID: 12399403
  46. Uecker H, Hermisson J. On the fixation process of a beneficial mutation in a variable environment. Genetics 2011; 188:915-30. https://doi.org/10.1534/genetics.110.124297 PMID: 21652524
  47. Peischl S, Kirkpatrick M. Establishment of new mutations in changing envionments. Genetics 2012; 191:895-906. https://doi.org/10.1534/genetics.112.140756 PMID: 22542964
  48. Kirkpatrick M, Peischl S. Evolutionary rescue by beneficial mutations in environments that change in space and time. Philos. Trans. R. Soc. B 2013; 368:20120082.
  49. Alto BW, Wasik BR, Morales NM, Turner PE. Stochastic temperatures impede RNA virus adaptation. Evolution 2013; 67:969-79. https://doi.org/10.1111/evo.12034 PMID: 23550749
  50. Duffy S, Turner PE, Burch CL. Pleiotropic costs of niche expansion in the RNA bacteriophage Φ6. Genetics 2006; 172:751-7. https://doi.org/10.1534/genetics.105.051136 PMID: 16299384
  51. Ford BE, Sun B, Carpino J, Chapler ES, Ching J, Choi Y, et al. Frequency and fitness consequences of bacteriophage Φ6 host range mutants. PLOS ONE 2014; 9:e113078. https://doi.org/10.1371/journal. pone.0113078 PMID: 25409341
  52. Turner PE, Morales NM, Alto BW, Remold SK. Role of evolved host breadth in the initial emergence of an RNA virus. Evolution 2010; 64:3273-86. https://doi.org/10.1111/j.1558-5646.2010.01051.x PMID: 20633045
  53. Waxman D, Peck JR. Sex and adaptation in a changing environment. Genetics 1999; 153:1041-53. PMID: 10511577
  54. Arribas M, Kubota K, Cabanillas L, La ´zaro E. Adaptation to fluctuating temperatures in an RNA virus is driven by the most stringent selective pressure. PLOS ONE 2014; 9:e100940. https://doi.org/10.1371/ journal.pone.0100940 PMID: 24963780
  55. Somero GN. Proteins and temperature. Annu. Rev. Physiol. 1995; 57:43-68. https://doi.org/10.1146/ annurev.ph.57.030195.000355 PMID: 7778874
  56. Tokuriki N, Stricher F, Schymkowitz J, Serrano L, Tawfik DS. The stability effects of protein mutations appear to be universally distributed. J. Mol. Biol. 2007; 369:1318-22. https://doi.org/10.1016/j.jmb. 2007.03.069 PMID: 17482644
  57. Tokuriki N, Tawfik DS. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 2009; 19:596-604. https://doi.org/10.1016/j.sbi.2009.08.003 PMID: 19765975
  58. Bloom JD, Silberg JJ, Wilke CO, Drummond DA, Adami C, Arnold FH. Thermodynamic prediction of protein neutrality. PNAS 2005; 102:606-11. https://doi.org/10.1073/pnas.0406744102 PMID: 15644440
  59. Bloom JD, Labthavikul ST, Otey CR, Arnold FH. Protein stability promotes evolvability. PNAS 2006; 103:5869-74. https://doi.org/10.1073/pnas.0510098103 PMID: 16581913
  60. Gong LI, Suchard MA, Bloom JD. Stability-mediated epistasis constrains the evolution of an influenza protein. eLife 2013; 2:e00631. https://doi.org/10.7554/eLife.00631 PMID: 23682315
  61. Tokuriki N, Stricher F, Serrano L, Tawfik DS. How protein stability and new functions trade off. PLOS Comp. Biol. 2008; 4:e1000002.
  62. Wahl LM, Gerrish PJ, Saika-Voivoid I. Evaluating the impact of population bottlenecks in experimental evolution. Genetics 2002; 162:961-71. PMID: 12399403
  63. Vogwill T, Phillips RL, Gifford DR, MacLean CR. Divergent evolution peaks under intermediate popula- tion bottlenecks during bacterial experimental evolution. Proc. R. Soc. B 2016; 283:20160749. https:// doi.org/10.1098/rspb.2016.0749 PMID: 27466449