British squirrels infected with leprosy

With the exception of armadillos in the Americas, leprosy infections are considered almost exclusively restricted to humans. Avanzi et al. examined warty growths on the faces and extremities of red squirrels in the British Isles and found that two species of leprosy-causing organisms were to blame (see the Perspective by Stinear and Brosch). Mycobacterium leprae in the southern population of Brownsea Island squirrels originated from a medieval human strain. M. lepromatosis was found in red squirrels from elsewhere in the United Kingdom and Ireland. Human leprosy is proving hard to eradicate, despite available drugs. Perhaps other wildlife species are also reservoirs for this stubborn disease.
Science, this issue p. 744; see also p. 702

Abstract

Leprosy, caused by infection with Mycobacterium leprae or the recently discovered Mycobacterium lepromatosis, was once endemic in humans in the British Isles. Red squirrels in Great Britain (Sciurus vulgaris) have increasingly been observed with leprosy-like lesions on the head and limbs. Using genomics, histopathology, and serology, we found M. lepromatosis in squirrels from England, Ireland, and Scotland, and M. leprae in squirrels from Brownsea Island, England. Infection was detected in overtly diseased and seemingly healthy animals. Phylogenetic comparisons of British and Irish M. lepromatosis with two Mexican strains from humans show that they diverged from a common ancestor around 27,000 years ago, whereas the M. leprae strain is closest to one that circulated in Medieval England. Red squirrels are thus a reservoir for leprosy in the British Isles.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member?

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S5
Tables S1 to S14
References (3151)

Resources

File (aah3783-table-s1.xlsx)
File (aah3783-table-s10.xlsx)
File (aah3783-table-s11.xlsx)
File (aah3783-table-s12.xlsx)
File (aah3783-table-s13.xlsx)
File (aah3783-table-s14.xlsx)
File (aah3783-table-s2.xlsx)
File (aah3783-table-s3.xlsx)
File (aah3783-table-s4.xlsx)
File (aah3783-table-s5.xlsx)
File (aah3783-table-s6.xlsx)
File (aah3783-table-s7.xlsx)
File (aah3783-table-s8.xlsx)
File (aah3783-table-s9.xlsx)
File (avanzi.sm.pdf)

References and Notes

1
World Health Organization, Global leprosy: Update on the 2012 situation. Wkly. Epidemiol. Rec. 88, 365–379 (2013).
2
Donoghue H. D., Taylor G. M., Marcsik A., Molnár E., Pálfi G., Pap I., Teschler-Nicola M., Pinhasi R., Erdal Y. S., Velemínsky P., Likovsky J., Belcastro M. G., Mariotti V., Riga A., Rubini M., Zaio P., Besra G. S., Lee O. Y., Wu H. H., Minnikin D. E., Bull I. D., O’Grady J., Spigelman M., A migration-driven model for the historical spread of leprosy in medieval Eastern and Central Europe. Infect. Genet. Evol. 31, 250–256 (2015).
3
Schuenemann V. J., Singh P., Mendum T. A., Krause-Kyora B., Jäger G., Bos K. I., Herbig A., Economou C., Benjak A., Busso P., Nebel A., Boldsen J. L., Kjellström A., Wu H., Stewart G. R., Taylor G. M., Bauer P., Lee O. Y., Wu H. H., Minnikin D. E., Besra G. S., Tucker K., Roffey S., Sow S. O., Cole S. T., Nieselt K., Krause J., Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341, 179–183 (2013).
4
Alter A., Grant A., Abel L., Alcaïs A., Schurr E., Leprosy as a genetic disease. Mamm. Genome 22, 19–31 (2011).
5
Wong S. H., Gochhait S., Malhotra D., Pettersson F. H., Teo Y. Y., Khor C. C., Rautanen A., Chapman S. J., Mills T. C., Srivastava A., Rudko A., Freidin M. B., Puzyrev V. P., Ali S., Aggarwal S., Chopra R., Reddy B. S., Garg V. K., Roy S., Meisner S., Hazra S. K., Saha B., Floyd S., Keating B. J., Kim C., Fairfax B. P., Knight J. C., Hill P. C., Adegbola R. A., Hakonarson H., Fine P. E., Pitchappan R. M., Bamezai R. N., Hill A. V., Vannberg F. O., Leprosy and the adaptation of human toll-like receptor 1. PLOS Pathog. 6, e1000979 (2010).
6
Fulton N., Anderson L. F., Watson J. M., Abubakar I., Leprosy in England and Wales 1953-2012: Surveillance and challenges in low incidence countries. BMJ Open 6, e010608 (2016).
7
Sharma R., Singh P., Loughry W. J., Lockhart J. M., Inman W. B., Duthie M. S., Pena M. T., Marcos L. A., Scollard D. M., Cole S. T., Truman R. W., Zoonotic leprosy in the southeastern United States. Emerg. Infect. Dis. 21, 2127–2134 (2015).
8
Truman R., Leprosy in wild armadillos. Lepr. Rev. 76, 198–208 (2005).
9
Truman R. W., Singh P., Sharma R., Busso P., Rougemont J., Paniz-Mondolfi A., Kapopoulou A., Brisse S., Scollard D. M., Gillis T. P., Cole S. T., Probable zoonotic leprosy in the southern United States. N. Engl. J. Med. 364, 1626–1633 (2011).
10
Han X. Y., Seo Y. H., Sizer K. C., Schoberle T., May G. S., Spencer J. S., Li W., Nair R. G., A new Mycobacterium species causing diffuse lepromatous leprosy. Am. J. Clin. Pathol. 130, 856–864 (2008).
11
Singh P., Benjak A., Schuenemann V. J., Herbig A., Avanzi C., Busso P., Nieselt K., Krause J., Vera-Cabrera L., Cole S. T., Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc. Natl. Acad. Sci. U.S.A. 112, 4459–4464 (2015).
12
M. Carey, G. Hamilton, A. Poole, C. Lawton, The Irish Squirrel Survey 2007 (COFORD, Dublin, 2007).
13
S. Harris, G. B. Corbet, The Handbook of British Mammals (Mammal Society/Blackwell Scientific, ed. 3, 1991).
14
Tompkins D. M., Sainsbury A. W., Nettleton P., Buxton D., Gurnell J., Parapoxvirus causes a deleterious disease in red squirrels associated with UK population declines. Proc. R. Soc. B 269, 529–533 (2002).
15
Stokstad E., Red squirrels rising. Science 352, 1268–1271 (2016).
16
Council of Europe, Convention on the Conservation of European Wildlife and Natural Habitats (ETS No. 104), Appendix III (1979).https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=0900001680304356
17
Meredith A., Del Pozo J., Smith S., Milne E., Stevenson K., McLuckie J., Leprosy in red squirrels in Scotland. Vet. Rec. 175, 285–286 (2014).
18
Simpson V., Hargreaves J., Butler H., Blackett T., Stevenson K., McLuckie J., Leprosy in red squirrels on the Isle of Wight and Brownsea Island. Vet. Rec. 177, 206–207 (2015).
19
See supplementary materials on Science Online.
20
Spencer J. S., Brennan P. J., The role of Mycobacterium leprae phenolic glycolipid I (PGL-I) in serodiagnosis and in the pathogenesis of leprosy. Lepr. Rev. 82, 344–357 (2011).
21
Velarde-Félix J. S., Alvarado-Villa G., Vera-Cabrera L., “Lucio’s Phenomenon” Associated with Mycobacterium lepromatosis. Am. J. Trop. Med. Hyg. 94, 483–484 (2016).
22
Vera-Cabrera L., Escalante-Fuentes W., Ocampo-Garza S. S., Ocampo-Candiani J., Molina-Torres C. A., Avanzi C., Benjak A., Busso P., Singh P., Cole S. T., Mycobacterium lepromatosis infections in Nuevo León, Mexico. J. Clin. Microbiol. 53, 1945–1946 (2015).
23
Monot M., Honoré N., Garnier T., Zidane N., Sherafi D., Paniz-Mondolfi A., Matsuoka M., Taylor G. M., Donoghue H. D., Bouwman A., Mays S., Watson C., Lockwood D., Khamesipour A., Dowlati Y., Jianping S., Rea T. H., Vera-Cabrera L., Stefani M. M., Banu S., Macdonald M., Sapkota B. R., Spencer J. S., Thomas J., Harshman K., Singh P., Busso P., Gattiker A., Rougemont J., Brennan P. J., Cole S. T., Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat. Genet. 41, 1282–1289 (2009).
24
Drummond A. J., Rambaut A., BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
25
Vieira B. P., Fonseca C., Rocha R. G., Critical steps to ensure the successful reintroduction of the Eurasian red squirrel. Anim. Biodivers. Conserv. 38, 49–58 (2015).
26
Krutzik S. R., Ochoa M. T., Sieling P. A., Uematsu S., Ng Y. W., Legaspi A., Liu P. T., Cole S. T., Godowski P. J., Maeda Y., Sarno E. N., Norgard M. V., Brennan P. J., Akira S., Rea T. H., Modlin R. L., Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat. Med. 9, 525–532 (2003).
27
de Sales Marques C., Brito-de-Souza V. N., Guerreiro L. T., Martins J. H., Amaral E. P., Cardoso C. C., Dias-Batista I. M., Silva W. L., Nery J. A., Medeiros P., Gigliotti P., Campanelli A. P., Virmond M., Sarno E. N., Mira M. T., Lana F. C., Caffarena E. R., Pacheco A. G., Pereira A. C., Moraes M. O., Toll-like receptor 1 N248S single-nucleotide polymorphism is associated with leprosy risk and regulates immune activation during mycobacterial infection. J. Infect. Dis. 208, 120–129 (2013).
28
Adams L. B., Pena M. T., Sharma R., Hagge D. A., Schurr E., Truman R. W., Insights from animal models on the immunogenetics of leprosy: A review. Mem. Inst. Oswaldo Cruz 107 (suppl. 1), 197–208 (2012).
29
Jessamine P. G., Desjardins M., Gillis T., Scollard D., Jamieson F., Broukhanski G., Chedore P., McCarthy A., Leprosy-like illness in a patient with Mycobacterium lepromatosis from Ontario, Canada. J. Drugs Dermatol. 11, 229–233 (2012).
30
P. Lurz, Red Squirrel: Naturally Scottish (Scottish Natural Heritage, 2010).
31
Simpson V. R., Hargreaves J., Butler H. M., Davison N. J., Everest D. J., Causes of mortality and pathological lesions observed post-mortem in red squirrels (Sciurus vulgaris) in Great Britain. BMC Vet. Res. 9, 229 (2013).
32
Ridley D. S., Jopling W. H., Classification of leprosy according to immunity. A five-group system. Int. J. Lepr. Mycobact. Dis. 34, 255–273 (1966).
33
Phillippy A. M., Deng X., Zhang W., Salzberg S. L., Efficient oligonucleotide probe selection for pan-genomic tiling arrays. BMC Bioinformatics 10, 293 (2009).
34
Bolger A. M., Lohse M., Usadel B., Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
35
Langmead B., Salzberg S. L., Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
36
Kiełbasa S. M., Wan R., Sato K., Horton P., Frith M. C., Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).
37
Koboldt D. C., Zhang Q., Larson D. E., Shen D., McLellan M. D., Lin L., Miller C. A., Mardis E. R., Ding L., Wilson R. K., VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
38
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
39
M. Nei, S. Kumar, Molecular Evolution and Phylogenetics (Oxford Univ. Press, 2000).
40
Johnson C. M., Lyle E. A., Omueti K. O., Stepensky V. A., Yegin O., Alpsoy E., Hamann L., Schumann R. R., Tapping R. I., Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J. Immunol. 178, 7520–7524 (2007).
42
Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E., The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
43
Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Gallo Cassarino T., Bertoni M., Bordoli L., Schwede T., SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).
44
Jin M. S., Kim S. E., Heo J. Y., Lee M. E., Kim H. M., Paik S. G., Lee H., Lee J. O., Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).
45
Xu Y., Tao X., Shen B., Horng T., Medzhitov R., Manley J. L., Tong L., Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000). 10.1038/35040600
46
Zhou K., Kanai R., Lee P., Wang H.-W., Modis Y., Toll-like receptor 5 forms asymmetric dimers in the absence of flagellin. J. Struct. Biol. 177, 402–409 (2012).
47
Botos I., Segal D. M., Davies D. R., The structural biology of Toll-like receptors. Structure 19, 447–459 (2011).
48
Krogh A., Larsson B., von Heijne G., Sonnhammer E. L., Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).
49
L. L. C. Schrödinger, The PyMOL molecular graphics system, version 1.8 (2015).
50
Schuring R. P., Hamann L., Faber W. R., Pahan D., Richardus J. H., Schumann R. R., Oskam L., Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J. Infect. Dis. 199, 1816–1819 (2009).
51
Ben-Ali M., Corre B., Manry J., Barreiro L. B., Quach H., Boniotto M., Pellegrini S., Quintana-Murci L., Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum. Mutat. 32, 643–652 (2011).

Information & Authors

Information

Published In

Science
Volume 354 | Issue 6313
11 November 2016

Submission history

Received: 21 June 2016
Accepted: 27 September 2016
Published in print: 11 November 2016

Permissions

Request permissions for this article.

Acknowledgments

We thank E. Sheehy, E. Goldstein, M. Flaherty, A. Zintl, the National Trust, Forestry Commission Scotland, and Saving Scotland’s Red Squirrels for samples, help, and advice. We thank the Genomic Technologies Facility at the University of Lausanne for Illumina sequencing and technical support. Raw sequence read files have been deposited in the Sequence Read Archive of the National Center for Biotechnology Information under accession numbers SRR3672737 to SRR3672758 (NCBI BioProject PRJNA325727), SRR3674396 to SRR3674450 (NCBI BioProject PRJNA325827), SRR3674451 to SRR3674453 (NCBI BioProject PRJNA325856), and SRR3673933; representative TLR1 sequences have been deposited in GenBank under accession numbers KX388139, KX388140, and KX388141. Phylogenetic trees and SNP alignments have been deposited at Treebase under Study Accession URL http://purl.org/phylo/treebase/phylows/study/TB2:S19692. Supported by the Fondation Raoul Follereau and Swiss National Science Foundation grant IZRJZ3_164174 (S.T.C.), the Scottish Government Rural and Environment Science and Analytical Services Division (K.S.), and the Thomas O’Hanlon Memorial Award in Veterinary Medicine (F.McD.).

Authors

Affiliations

Charlotte Avanzi*
Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Jorge del-Pozo*
Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Scotland, UK.
Andrej Benjak*
Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Karen Stevenson
Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Scotland, UK.
Victor R. Simpson
Wildlife Veterinary Investigation Centre, Chacewater, Cornwall, UK.
Philippe Busso
Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Joyce McLuckie
Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Scotland, UK.
Chloé Loiseau
Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Present address: Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.
Colin Lawton
School of Natural Sciences, Ryan Institute, National University of Ireland, Galway, Ireland.
Janne Schoening
UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.
Darren J. Shaw
Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Scotland, UK.
Jérémie Piton
Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Lucio Vera-Cabrera
Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, Monterrey, N.L., Mexico.
Jesùs S. Velarde-Felix
Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, Monterrey, N.L., Mexico.
Fergal McDermott
UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.
Stephen V. Gordon
UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.
UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.
UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland.
UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.
Stewart T. Cole [email protected]
Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Anna L. Meredith [email protected]
Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Scotland, UK.

Notes

*
These authors contributed equally to this work.
‡Corresponding author: Email: [email protected] (S.T.C.); [email protected] (A.L.M.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Fatal exudative dermatitis in island populations of red squirrels (Sciurus vulgaris): spillover of a virulent Staphylococcus aureus clone (ST49) from reservoir hosts, Microbial Genomics, 7, 5, (2021).https://doi.org/10.1099/mgen.0.000565
    Crossref
  2. Susceptibility and resistance in leprosy: Studies in the mouse model, Immunological Reviews, 301, 1, (157-174), (2021).https://doi.org/10.1111/imr.12960
    Crossref
  3. DIAGNOSING AND CATEGORIZING LEPROSY IN LIVE EURASIAN RED SQUIRRELS (SCIURUS VULGARIS) FOR MANAGEMENT, SURVEILLANCE, AND TRANSLOCATION PURPOSES, Journal of Zoo and Wildlife Medicine, 52, 2, (2021).https://doi.org/10.1638/2020-0066
    Crossref
  4. Strategies for drug target identification in Mycobacterium leprae, Drug Discovery Today, 26, 7, (1569-1573), (2021).https://doi.org/10.1016/j.drudis.2021.03.026
    Crossref
  5. Wildlife conservation in a fragmented landscape: the Eurasian red squirrel on the Isle of Wight, Conservation Genetics, 22, 4, (571-583), (2021).https://doi.org/10.1007/s10592-021-01380-z
    Crossref
  6. Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes, BMC Biology, 19, 1, (2021).https://doi.org/10.1186/s12915-021-01120-2
    Crossref
  7. Leprosy in wild chimpanzees, Nature, 598, 7882, (652-656), (2021).https://doi.org/10.1038/s41586-021-03968-4
    Crossref
  8. Leprosy in red squirrels, Science, 354, 6313, (702-703), (2021)./doi/10.1126/science.aal0145
    Abstract
  9. Bacterial Pathogens and Symbionts Harboured by Ixodes ricinus Ticks Parasitising Red Squirrels in the United Kingdom, Pathogens, 10, 4, (458), (2021).https://doi.org/10.3390/pathogens10040458
    Crossref
  10. A systematic review into the suitability of urban refugia for the Eurasian red squirrel Sciurus vulgaris , Mammal Review, (2021).https://doi.org/10.1111/mam.12264
    Crossref
  11. See more
Loading...

View Options

Get Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media