Red squirrels in the British Isles are infected with leprosy bacilli
British squirrels infected with leprosy
With the exception of armadillos in the Americas, leprosy infections are considered almost exclusively restricted to humans. Avanzi et al. examined warty growths on the faces and extremities of red squirrels in the British Isles and found that two species of leprosy-causing organisms were to blame (see the Perspective by Stinear and Brosch). Mycobacterium leprae in the southern population of Brownsea Island squirrels originated from a medieval human strain. M. lepromatosis was found in red squirrels from elsewhere in the United Kingdom and Ireland. Human leprosy is proving hard to eradicate, despite available drugs. Perhaps other wildlife species are also reservoirs for this stubborn disease.
Abstract
Leprosy, caused by infection with Mycobacterium leprae or the recently discovered Mycobacterium lepromatosis, was once endemic in humans in the British Isles. Red squirrels in Great Britain (Sciurus vulgaris) have increasingly been observed with leprosy-like lesions on the head and limbs. Using genomics, histopathology, and serology, we found M. lepromatosis in squirrels from England, Ireland, and Scotland, and M. leprae in squirrels from Brownsea Island, England. Infection was detected in overtly diseased and seemingly healthy animals. Phylogenetic comparisons of British and Irish M. lepromatosis with two Mexican strains from humans show that they diverged from a common ancestor around 27,000 years ago, whereas the M. leprae strain is closest to one that circulated in Medieval England. Red squirrels are thus a reservoir for leprosy in the British Isles.
Get full access to this article
View all available purchase options and get full access to this article.
Already a subscriber or AAAS Member?Log In
Supplementary Material
Summary
Materials and Methods
Figs. S1 to S5
Tables S1 to S14
Resources
File (aah3783-table-s1.xlsx)
File (aah3783-table-s10.xlsx)
File (aah3783-table-s11.xlsx)
File (aah3783-table-s12.xlsx)
File (aah3783-table-s13.xlsx)
File (aah3783-table-s14.xlsx)
File (aah3783-table-s2.xlsx)
File (aah3783-table-s3.xlsx)
File (aah3783-table-s4.xlsx)
File (aah3783-table-s5.xlsx)
File (aah3783-table-s6.xlsx)
File (aah3783-table-s7.xlsx)
File (aah3783-table-s8.xlsx)
File (aah3783-table-s9.xlsx)
File (avanzi.sm.pdf)
References and Notes
1
World Health Organization, Global leprosy: Update on the 2012 situation. Wkly. Epidemiol. Rec. 88, 365–379 (2013).
2
Donoghue H. D., Taylor G. M., Marcsik A., Molnár E., Pálfi G., Pap I., Teschler-Nicola M., Pinhasi R., Erdal Y. S., Velemínsky P., Likovsky J., Belcastro M. G., Mariotti V., Riga A., Rubini M., Zaio P., Besra G. S., Lee O. Y., Wu H. H., Minnikin D. E., Bull I. D., O’Grady J., Spigelman M., A migration-driven model for the historical spread of leprosy in medieval Eastern and Central Europe. Infect. Genet. Evol. 31, 250–256 (2015).
3
Schuenemann V. J., Singh P., Mendum T. A., Krause-Kyora B., Jäger G., Bos K. I., Herbig A., Economou C., Benjak A., Busso P., Nebel A., Boldsen J. L., Kjellström A., Wu H., Stewart G. R., Taylor G. M., Bauer P., Lee O. Y., Wu H. H., Minnikin D. E., Besra G. S., Tucker K., Roffey S., Sow S. O., Cole S. T., Nieselt K., Krause J., Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341, 179–183 (2013).
4
Alter A., Grant A., Abel L., Alcaïs A., Schurr E., Leprosy as a genetic disease. Mamm. Genome 22, 19–31 (2011).
5
Wong S. H., Gochhait S., Malhotra D., Pettersson F. H., Teo Y. Y., Khor C. C., Rautanen A., Chapman S. J., Mills T. C., Srivastava A., Rudko A., Freidin M. B., Puzyrev V. P., Ali S., Aggarwal S., Chopra R., Reddy B. S., Garg V. K., Roy S., Meisner S., Hazra S. K., Saha B., Floyd S., Keating B. J., Kim C., Fairfax B. P., Knight J. C., Hill P. C., Adegbola R. A., Hakonarson H., Fine P. E., Pitchappan R. M., Bamezai R. N., Hill A. V., Vannberg F. O., Leprosy and the adaptation of human toll-like receptor 1. PLOS Pathog. 6, e1000979 (2010).
6
Fulton N., Anderson L. F., Watson J. M., Abubakar I., Leprosy in England and Wales 1953-2012: Surveillance and challenges in low incidence countries. BMJ Open 6, e010608 (2016).
7
Sharma R., Singh P., Loughry W. J., Lockhart J. M., Inman W. B., Duthie M. S., Pena M. T., Marcos L. A., Scollard D. M., Cole S. T., Truman R. W., Zoonotic leprosy in the southeastern United States. Emerg. Infect. Dis. 21, 2127–2134 (2015).
8
Truman R., Leprosy in wild armadillos. Lepr. Rev. 76, 198–208 (2005).
9
Truman R. W., Singh P., Sharma R., Busso P., Rougemont J., Paniz-Mondolfi A., Kapopoulou A., Brisse S., Scollard D. M., Gillis T. P., Cole S. T., Probable zoonotic leprosy in the southern United States. N. Engl. J. Med. 364, 1626–1633 (2011).
10
Han X. Y., Seo Y. H., Sizer K. C., Schoberle T., May G. S., Spencer J. S., Li W., Nair R. G., A new Mycobacterium species causing diffuse lepromatous leprosy. Am. J. Clin. Pathol. 130, 856–864 (2008).
11
Singh P., Benjak A., Schuenemann V. J., Herbig A., Avanzi C., Busso P., Nieselt K., Krause J., Vera-Cabrera L., Cole S. T., Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc. Natl. Acad. Sci. U.S.A. 112, 4459–4464 (2015).
12
M. Carey, G. Hamilton, A. Poole, C. Lawton, The Irish Squirrel Survey 2007 (COFORD, Dublin, 2007).
13
S. Harris, G. B. Corbet, The Handbook of British Mammals (Mammal Society/Blackwell Scientific, ed. 3, 1991).
14
Tompkins D. M., Sainsbury A. W., Nettleton P., Buxton D., Gurnell J., Parapoxvirus causes a deleterious disease in red squirrels associated with UK population declines. Proc. R. Soc. B 269, 529–533 (2002).
15
Stokstad E., Red squirrels rising. Science 352, 1268–1271 (2016).
16
Council of Europe, Convention on the Conservation of European Wildlife and Natural Habitats (ETS No. 104), Appendix III (1979).https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=0900001680304356
17
Meredith A., Del Pozo J., Smith S., Milne E., Stevenson K., McLuckie J., Leprosy in red squirrels in Scotland. Vet. Rec. 175, 285–286 (2014).
18
Simpson V., Hargreaves J., Butler H., Blackett T., Stevenson K., McLuckie J., Leprosy in red squirrels on the Isle of Wight and Brownsea Island. Vet. Rec. 177, 206–207 (2015).
19
See supplementary materials on Science Online.
20
Spencer J. S., Brennan P. J., The role of Mycobacterium leprae phenolic glycolipid I (PGL-I) in serodiagnosis and in the pathogenesis of leprosy. Lepr. Rev. 82, 344–357 (2011).
21
Velarde-Félix J. S., Alvarado-Villa G., Vera-Cabrera L., “Lucio’s Phenomenon” Associated with Mycobacterium lepromatosis. Am. J. Trop. Med. Hyg. 94, 483–484 (2016).
22
Vera-Cabrera L., Escalante-Fuentes W., Ocampo-Garza S. S., Ocampo-Candiani J., Molina-Torres C. A., Avanzi C., Benjak A., Busso P., Singh P., Cole S. T., Mycobacterium lepromatosis infections in Nuevo León, Mexico. J. Clin. Microbiol. 53, 1945–1946 (2015).
23
Monot M., Honoré N., Garnier T., Zidane N., Sherafi D., Paniz-Mondolfi A., Matsuoka M., Taylor G. M., Donoghue H. D., Bouwman A., Mays S., Watson C., Lockwood D., Khamesipour A., Dowlati Y., Jianping S., Rea T. H., Vera-Cabrera L., Stefani M. M., Banu S., Macdonald M., Sapkota B. R., Spencer J. S., Thomas J., Harshman K., Singh P., Busso P., Gattiker A., Rougemont J., Brennan P. J., Cole S. T., Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat. Genet. 41, 1282–1289 (2009).
24
Drummond A. J., Rambaut A., BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
25
Vieira B. P., Fonseca C., Rocha R. G., Critical steps to ensure the successful reintroduction of the Eurasian red squirrel. Anim. Biodivers. Conserv. 38, 49–58 (2015).
26
Krutzik S. R., Ochoa M. T., Sieling P. A., Uematsu S., Ng Y. W., Legaspi A., Liu P. T., Cole S. T., Godowski P. J., Maeda Y., Sarno E. N., Norgard M. V., Brennan P. J., Akira S., Rea T. H., Modlin R. L., Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat. Med. 9, 525–532 (2003).
27
de Sales Marques C., Brito-de-Souza V. N., Guerreiro L. T., Martins J. H., Amaral E. P., Cardoso C. C., Dias-Batista I. M., Silva W. L., Nery J. A., Medeiros P., Gigliotti P., Campanelli A. P., Virmond M., Sarno E. N., Mira M. T., Lana F. C., Caffarena E. R., Pacheco A. G., Pereira A. C., Moraes M. O., Toll-like receptor 1 N248S single-nucleotide polymorphism is associated with leprosy risk and regulates immune activation during mycobacterial infection. J. Infect. Dis. 208, 120–129 (2013).
28
Adams L. B., Pena M. T., Sharma R., Hagge D. A., Schurr E., Truman R. W., Insights from animal models on the immunogenetics of leprosy: A review. Mem. Inst. Oswaldo Cruz 107 (suppl. 1), 197–208 (2012).
29
Jessamine P. G., Desjardins M., Gillis T., Scollard D., Jamieson F., Broukhanski G., Chedore P., McCarthy A., Leprosy-like illness in a patient with Mycobacterium lepromatosis from Ontario, Canada. J. Drugs Dermatol. 11, 229–233 (2012).
30
P. Lurz, Red Squirrel: Naturally Scottish (Scottish Natural Heritage, 2010).
31
Simpson V. R., Hargreaves J., Butler H. M., Davison N. J., Everest D. J., Causes of mortality and pathological lesions observed post-mortem in red squirrels (Sciurus vulgaris) in Great Britain. BMC Vet. Res. 9, 229 (2013).
32
Ridley D. S., Jopling W. H., Classification of leprosy according to immunity. A five-group system. Int. J. Lepr. Mycobact. Dis. 34, 255–273 (1966).
33
Phillippy A. M., Deng X., Zhang W., Salzberg S. L., Efficient oligonucleotide probe selection for pan-genomic tiling arrays. BMC Bioinformatics 10, 293 (2009).
34
Bolger A. M., Lohse M., Usadel B., Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
35
Langmead B., Salzberg S. L., Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
36
Kiełbasa S. M., Wan R., Sato K., Horton P., Frith M. C., Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).
37
Koboldt D. C., Zhang Q., Larson D. E., Shen D., McLellan M. D., Lin L., Miller C. A., Mardis E. R., Ding L., Wilson R. K., VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
38
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
39
M. Nei, S. Kumar, Molecular Evolution and Phylogenetics (Oxford Univ. Press, 2000).
40
Johnson C. M., Lyle E. A., Omueti K. O., Stepensky V. A., Yegin O., Alpsoy E., Hamann L., Schumann R. R., Tapping R. I., Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J. Immunol. 178, 7520–7524 (2007).
41
Practical Statistics for Medical Research (CRC Press, 1990); www.crcpress.com/Practical-Statistics-for-Medical-Research/Altman/p/book/9780412276309.
42
Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E., The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
43
Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Gallo Cassarino T., Bertoni M., Bordoli L., Schwede T., SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).
44
Jin M. S., Kim S. E., Heo J. Y., Lee M. E., Kim H. M., Paik S. G., Lee H., Lee J. O., Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).
45
Xu Y., Tao X., Shen B., Horng T., Medzhitov R., Manley J. L., Tong L., Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000). 10.1038/35040600
46
Zhou K., Kanai R., Lee P., Wang H.-W., Modis Y., Toll-like receptor 5 forms asymmetric dimers in the absence of flagellin. J. Struct. Biol. 177, 402–409 (2012).
47
Botos I., Segal D. M., Davies D. R., The structural biology of Toll-like receptors. Structure 19, 447–459 (2011).
48
Krogh A., Larsson B., von Heijne G., Sonnhammer E. L., Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).
49
L. L. C. Schrödinger, The PyMOL molecular graphics system, version 1.8 (2015).
50
Schuring R. P., Hamann L., Faber W. R., Pahan D., Richardus J. H., Schumann R. R., Oskam L., Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J. Infect. Dis. 199, 1816–1819 (2009).
51
Ben-Ali M., Corre B., Manry J., Barreiro L. B., Quach H., Boniotto M., Pellegrini S., Quintana-Murci L., Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum. Mutat. 32, 643–652 (2011).
Information & Authors
Information
Published In

Science
Volume 354 | Issue 6313
11 November 2016
11 November 2016
Copyright
Copyright © 2016, American Association for the Advancement of Science.
Submission history
Received: 21 June 2016
Accepted: 27 September 2016
Published in print: 11 November 2016
Acknowledgments
We thank E. Sheehy, E. Goldstein, M. Flaherty, A. Zintl, the National Trust, Forestry Commission Scotland, and Saving Scotland’s Red Squirrels for samples, help, and advice. We thank the Genomic Technologies Facility at the University of Lausanne for Illumina sequencing and technical support. Raw sequence read files have been deposited in the Sequence Read Archive of the National Center for Biotechnology Information under accession numbers SRR3672737 to SRR3672758 (NCBI BioProject PRJNA325727), SRR3674396 to SRR3674450 (NCBI BioProject PRJNA325827), SRR3674451 to SRR3674453 (NCBI BioProject PRJNA325856), and SRR3673933; representative TLR1 sequences have been deposited in GenBank under accession numbers KX388139, KX388140, and KX388141. Phylogenetic trees and SNP alignments have been deposited at Treebase under Study Accession URL http://purl.org/phylo/treebase/phylows/study/TB2:S19692. Supported by the Fondation Raoul Follereau and Swiss National Science Foundation grant IZRJZ3_164174 (S.T.C.), the Scottish Government Rural and Environment Science and Analytical Services Division (K.S.), and the Thomas O’Hanlon Memorial Award in Veterinary Medicine (F.McD.).
Authors
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Export citation
Select the format you want to export the citation of this publication.
Cited by
- Fatal exudative dermatitis in island populations of red squirrels (Sciurus vulgaris): spillover of a virulent Staphylococcus aureus clone (ST49) from reservoir hosts, Microbial Genomics, 7, 5, (2021).https://doi.org/10.1099/mgen.0.000565
- Susceptibility and resistance in leprosy: Studies in the mouse model, Immunological Reviews, 301, 1, (157-174), (2021).https://doi.org/10.1111/imr.12960
- DIAGNOSING AND CATEGORIZING LEPROSY IN LIVE EURASIAN RED SQUIRRELS (SCIURUS VULGARIS) FOR MANAGEMENT, SURVEILLANCE, AND TRANSLOCATION PURPOSES, Journal of Zoo and Wildlife Medicine, 52, 2, (2021).https://doi.org/10.1638/2020-0066
- Strategies for drug target identification in Mycobacterium leprae, Drug Discovery Today, 26, 7, (1569-1573), (2021).https://doi.org/10.1016/j.drudis.2021.03.026
- Wildlife conservation in a fragmented landscape: the Eurasian red squirrel on the Isle of Wight, Conservation Genetics, 22, 4, (571-583), (2021).https://doi.org/10.1007/s10592-021-01380-z
- Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes, BMC Biology, 19, 1, (2021).https://doi.org/10.1186/s12915-021-01120-2
- Leprosy in wild chimpanzees, Nature, 598, 7882, (652-656), (2021).https://doi.org/10.1038/s41586-021-03968-4
- Leprosy in red squirrels, Science, 354, 6313, (702-703), (2021)./doi/10.1126/science.aal0145
- Bacterial Pathogens and Symbionts Harboured by Ixodes ricinus Ticks Parasitising Red Squirrels in the United Kingdom, Pathogens, 10, 4, (458), (2021).https://doi.org/10.3390/pathogens10040458
- A systematic review into the suitability of urban refugia for the Eurasian red squirrel Sciurus vulgaris , Mammal Review, (2021).https://doi.org/10.1111/mam.12264
- See more
Loading...
View Options
Get Access
Log in to view the full text
AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.
- Become a AAAS Member
- Activate your AAAS ID
- Purchase Access to Other Journals in the Science Family
- Account Help
Log in via OpenAthens.
Log in via Shibboleth.
More options
Register for free to read this article
As a service to the community, this article is available for free. Login or register for free to read this article.
Buy a single issue of Science for just $15 USD.
View options
PDF format
Download this article as a PDF file
Download PDF