
Mediated Reality using Computer Graphics Hardware for Computer Vision

James Fung, Felix Tang and Steve Mann
University of Toronto, Dept. of Electrical and Computer Engineering

10 King’s College Road, Toronto, Canada,�
fungja, mann � @eecg.toronto.edu, tangf@eyetap.org

Abstract

Wearable, camera based, head–tracking systems use
spatial image registration algorithms to align images
taken as the wearer gazes around their environment.
This allows for computer–generated information to ap-
pear to the user as though it was anchored in the real
world. Often, these algorithms require creation of a mul-
tiscale Gaussian pyramid or repetitive re–projection of
the images. Such operations, however, can be computa-
tionally expensive, and such head–tracking algorithms
are desired to run in real–time on a body borne com-
puter. In this paper, we present a method of using the
3D computer graphics hardware that is available in a
typical wearable computer to accelerate the repetitive
image projections required in many computer vision al-
gorithms. We apply this “graphics for vision” technique
to a wearable camera based head–tracking algorithm,
implemented on a wearable computer with 3D graphics
hardware. We perform an analysis of the acceleration
achieved by applying graphics hardware to computer vi-
sion to create a Mediated Reality.

1 Introduction

Motion estimation and image registration algorithms
often use repetitive or iterative schemes to determine
motion between images. At each iteration or repetition,
such algorithms often require the image to be warped,
and this warped image is then used as the input to
the next stage of processing. Additionally, multi-scale
Gaussian pyramids may need to be created, and image
filtering and down sampling may be required. Since
the image warp will typically not result in pixels be-
ing mapped exactly to other pixel locations, some meth-
ods of interpolation are required. The process of image
warping can often be computationally intensive, and ac-
curate filtering and interpolation techniques add to the
computational complexity of the image warp. Many vi-

sion algorithms, however, are desired to run in real–time,
and the time spent re–warping and filtering the images
can make up a large portion of the calculations required
on each frame.

Many current graphics cards incorporate a great deal
of hardware specifically designed to achieve extremely
fast real–time rendering of texture mapped polygons.
Additionally, high–end graphics cards incorporate hard-
ware designed for filtering and pixel interpolation to cre-
ate accurate texture maps. Many modern graphics cards
are capable of hardware bilinear filtering and anisotropic
filtering (though the specification of anisotropic filter-
ing varies greatly between different graphics cards). The
process of displaying a texture mapped polygon is essen-
tially the same as applying a projective coordinate trans-
formation to an image. This suggests that it is possible
to utilize the hardware of modern graphics cards to ap-
ply a projective coordinate transformation in hardware,
rather than doing so in software. In particular, graph-
ics cards are tuned to create perspective projections of
planar surfaces. When an image is texture mapped onto
this planar surface, the graphics hardware will project
the image onto the surface, which is a type of image
warping (under projection).

In order to achieve fast, real–time computer vision
algorithms, specialized hardware has, in the past, been
used. In [4], a general purpose array of FPGAs was used
to achieve face recognition at camera frame rates. While
similar hardware could be developed for image warp-
ing, such hardware is already incorporated into modern
graphics cards. It is thus possible to use existing, low
cost and easily available graphics cards to realize hard-
ware acceleration. In this way, computer graphics hard-
ware, which is most commonly used to project computer
generated information into an image (image synthesis),
is rather being used for the purpose of accelerating a
computer vision algorithm (image analysis).

 START WITH
IMAGE PAIR, g AND h

CONSTRUCT AN IMAGE PYRAMID
FOR EACH OF g AND h

INITIALIZE PARAMETERS TO THE IDENTITY
AND INITIALIZE RESOLUTION INDEX TO
LOWEST RESOLUTION DESIRED

ESTIMATE PARAMETERS, q, OF APPROXIMATE
MODEL RELATING IMAGES AT CURRENT
RESOLUTION LEVEL

CONVERT PARAMETERS, q, OF APPROXIMATE
MODEL TO PARAMETERS, p, OF EXACT MODEL

COMPOSE PARAMETERS, p
WITH PREVIOUS PARAMETERS

APPLY COMPOSITE PARAMETERS TO
ORIGINAL h TO BRING IT CLOSER TO TARGET g

 IS
h CLOSE ENOUGH
 TO g
 ?

APPLY COMPOSITE
PARAMETERS TO
ORIGINAL COMPARISON
IMAGE AT CURRENT
RESOLUTION LEVEL

INCREMENT
RESOLUTION
LEVEL INDEX

YES

YES

NO

NO

 IS
 FINAL DESIRED
LEVEL REACHED
 ?

END

Figure 1: The VideoOrbits algorithm. The steps shown in solid dark lines have
been accelerated using graphics hardware available on common 3D accelerated
computer graphics cards.

2 Experimental Setup

In order to determine the advantages of apply-
ing hardware video acceleration for image warping, a
Mesa3D program was written to access available video
hardware. Mesa3D is a library which works identically
to OpenGL [8]. Mesa3D is capable of performing per-
spective transformations of a plane [3] according to a
projection matrix. Such an ability is particularly suited
towards the VideoOrbits algorithm.

2.1 VideoOrbits

The VideoOrbits algorithm [7] considers transforma-
tions of planar patches as seen by a camera free to pan,
tilt, and rotate about its optical axis. VideoOrbits is well
suited for applying OpenGL video acceleration because
VideoOrbits is a repetitive multiscale algorithm. Fig-

ure 1 shows the VideoOrbits algorithm. The steps of the
algorithm which can be accelerated with graphics hard-
ware are outlined in bold. From the figure, it can be seen
that at each repetition, VideoOrbits attempts to estimate
eight parameters of a projective coordinate transforma-
tion to spatially register two images. Then, VideoOrbits
projects one image accordingly. This projected image
is then used as an input to the next repetition of the al-
gorithm. The projective coordinate transformation used
in VideoOrbits maps straight lines to straight lines at all
times, and thus represents a subset of all possible image
warps. Thus we refer to image warping in VideoOrbits
as projection rather than the more general term of image
warping. In OpenGL, this is achieved by the viewing of
a plane from different camera angles. In fact, the projec-
tive parameters calculated by VideoOrbits can be used
as a camera transformation in OpenGL.

Figure 2 demonstrates VideoOrbits image process-
ing. The top row of images shows the original images
taken by a camera looking about a static scene. The
second row of images shows each of the original im-
ages projected to spatially align with the leftmost im-
age. These images are demonstrate the operations car-
ried out in the highlighted algorithmic steps of figure 1.
Additionally, the images have been comparametrically
processed [6] to set their exposures equivalently. Note
from the shape of the images that after the VideoOrbits
projection, the images appear as projected quadrilater-
als. In OpenGL, each of the images is a texture mapped
plane, viewed at the appropriate angle. After each of the
images has been properly projected, they can each be
composited into a single image composite. The image in
the third row shows the result of compositing the mulit-
ple images of different exposure. This final image is
thus of large spatial extent. Furthermore, comparamet-
ric statistical methods have also been applied to create
an image of greater dynamic range than any of the origi-
nal images. The statistical image enhancement methods
applied to these images required floating pointing ac-
curacy, which is effortlessly accomodated by OpenGL
since OpenGL and graphics hardware can work natively
with floating point representations of textures.

VideoOrbits has applications for performing camera
based head tracking to create a wearable, tetherless me-
diated reality [5]. Essentially, the motion of a user’s
head as they look around a scene is very similar to the
motion of a camera panning, rotating, and tilting about
its optical axis. This is to say that motion of the cam-
era is induced by motion of the head. VideoOrbits is
well particularly suited to describe this prevalent mo-
tion in a camera based head tracking system. This is
especially useful in Mediated Reality applications to
make computer–generated information appear as though

S
P

A
T

IO
T

O
N

A
LL

Y
R

E
G

IS
T

E
R

E
D

FINAL IMAGE
COMPOSITE
AFTER OPTIMAL
STATISTICAL
INTEGRATION
OF SPATIOTONALLY
ALIGNED IMAGES

Figure 2: VideoOrbits example. Multiple images of the same subject matter are composited into a single high–dynamic range composite.

it was affixed to the real world scene as viewed through
an HMD or EyeTap [5] devices.

VideoOrbits camera based headtracking has been im-
plemented on a high–end server computer and runs at
11 frames per second. However, even faster processing
is desirable for more accurate head–tracking, and often,
wearable computers do not have as much computational
power as their desktop counterparts. Currently the algo-
rithm can lose tracking when large motions occur (such
as the user moving their head quickly). Faster tracking
causes large head motion to be captured by more frames,
thus in each pair of frames, the motion appears smaller.
This in turn results in greater accuracy for the VideoOr-
bits algorithm. Furthermore, by accelerating the image
projection, more repetitions of the algorithm can be per-
formed on each subsequent image, which in turn yields
greater accuracy as well.

To investigate the effect of graphics hardware accel-
eration, the OpenGL program was designed to accept
projective parameters from the VideoOrbits algorithm,
allowing the OpenGL program to be used with VideoOr-
bits. In this investigation, the speedup achieved with
graphics hardware was examined. This was done by
comparing the speed of the software image projection
algorithm to the OpenGL image projection program.

2.2 Mapping Projective Coordinate Transfor-
mations

In OpenGL, the most straightforward way of apply-
ing the projective coordinate transformation of VideoOr-
bits is to consider it to be a transformation to be applied
to the projection matrix used in OpenGL.

The operation of applying a projective coordinate
transformation to an image is homomorphic 1 to the
process of projecting a texture mapped polygon under
perspective projection in OpenGL. Thus, hardware ac-
celeration of VideoOrbits projective transformations can
be achieved by defining an homomorphism between the
projective space of VideoOrbits and the projective space
and homogeneous coordinate system of OpenGL. An
homomorphism � is defined by a mapping of VideoOr-
bits projective transformations � to OpenGL projection
matrices � : ��������� (1)

In the VideoOrbits algorithm, the projective coordinate
transformation (PCT) is written as:	�

�� ��� � ���������� ����� (2)

1homomorphic refers precisely to algebraic homomorphisms, as
discussed in [2]

� 	��! " #�$ &%�'%(#�)%"% � 	
 � � � 	+*� *,% �-/.� #.,%10 	2
� � �3� (3)

Thus, it defines an eight parameter space. The trans-
formation can be re-written as a 46587$5 matrix:9: � " � ;% * � %(� %<% * %. . % �

=>?9:
 � �
=> � � x (4)

where it can be seen that the set of projective coordi-
nate transformation forms a group acting upon a set @
of image coordinates.

Thus, what is desired is some homomorphism �
mapping the projective coordinate transformation of
VideoOrbits to a 4BA 7 A projection matrix in OpenGL.

The desired homomorphism is given by:

�DCE�GF � �IHJ 9: � < � &% * � %K � %"% * %.� .L% �
=>NMO

(5)

� 9PP: ��Q �'%"% RS�'%(*(%UTRS�! &% ��Q �! " #*L #T. % . � TT T T �
=WVV>

(6)

where it is now necessary to restrict
�X "

,
�'%<%�Y� T

. This
however, is not a problem since

�X "
and

�'%"%
represent

zoom in the

and � directions, and a zoom of
T

has little
physical sense. This mapping takes into account the dif-
ferent coordinate systems and conventions used by each
program. Equation 6 is used as a camera transformation
matrix. Thus, it describes the transformation the camera
undergoes, such that the plane will appear as required
under OpenGL perspective projection.

To perform the image projection in OpenGL, then,
the image is first loaded into the OpenGL program as a
texture map. The four corners of the image are mapped
onto the four vertices of a plane located at Z � � .

Then, the ‘camera’ in OpenGL is positioned to
face this plane. This is achieved by using the
gluLookAt() utility function.

Once the camera is facing the plane, a bounding frus-
tum is defined to create a perspective projection. The
function call glFrustum() creates a frustum which is
used to map a the region which falls inside the frustum
into a normalized device coordinate system (NDCS).
The resulting framebuffer holds an image which should
be close to (if not identical) to the VideoOrbits projec-
tion.

To conform exactly with the VideoOrbits programs,
the OpenGL program must create a viewing window

which properly bounds the transformed image. In or-
der to calculate where the bounds of this viewing win-
dow should lie, a normalized frustum projection matrix
is created. Then, the desired projection matrix is applied
to move the camera appropriately. The four corners of
the plane can now be calculated by applying the new
projection matrix to each of the four corners. These cor-
ners, given in the NDCS for the current frustum, give
the maximum bounds for the projected plane. A new
frustum, then, can be determined from these NDCS co-
ordinates. The new frustum viewing angle remains the
same, but the near plane geometry is determined by the
desired bounding box. Using this frustum to create the
image gives the properly projected and correctly bound
image.

2.3 Direct Rendering in GNU/Linux

In GNU/Linux, the hardware is allowed to render di-
rectly into the framebuffer via the Direct Rendering In-
terface [1] (DRI). DRI allows the video chipset to by-
pass the function calls required by the graphical win-
dowing system (X-Windows) to display graphics. DRI
is required to achieve hardware video acceleration in
GNU/Linux.

Once the plane has been projected, the results must be
read back from the framebuffer into main memory. This
process is known as “readback” [8], and is implemented
by the OpenGL function call glReadPixels(). Be-
cause graphics cards are not necessarily designed for
fast reads from the frame buffer to memory, the read-
back time must be included in the timing comparisons
of hardware vs. software image projection as it is an im-
portant aspect of the hardware rendering scheme being
used.

Since DRI renders directly to the framebuffer, the im-
age will appear on the screen when rendered. Thus, the
OpenGL hardware rendering program requires time to
set up the rendering area, and create an X-Window. In
an iterative/repetitive motion estimation algorithm, this
initial overhead time would be incurred only once, and
this setup time would not apply to the further estima-
tions.

In order to investigate the effect of hardware on mul-
tiple iterations, the display setup time was not timed.
The timing information for both the Mesa3D hardware
and software programs timed the following:

1. Initialization of the texture mapping the texture
onto a plane

2. Calculation of the bounding frustum

3. Positioning of the camera to apply the projective

coordinate transformation on the plane and render-
ing of the scene

4. Reading of the pixels from the framebuffer back
into memory

The time required to complete these steps is hereafter re-
ferred to as the projection times. To get a proper timing
for the projection, it must be timed at some point after
the image is known to have been rendered. The func-
tion call to glReadPixels() is used to read back the
image from the framebuffer. It ensures that the image is
rendered and this was verified by saving and displaying
the buffer which was read back.

3 Results

To determine the speed–up attained by using hard-
ware acceleration, a program using the hardware accel-
eration was compared with the software algorithm. A set
of projective coordinate transformations was generated
according to the equations of [9]. The programs were
run on a wearable computer with a 700 MHz Pentium–
III processor, with 64 MB of RAM. The wearable com-
puter had an Intel i810 graphics chipset. Additionally,
the programs were run an a more powerful desktop com-
puter which had a Nvidia GeForce2 GPU to investiage
the speedup achieved by more powerful graphics pro-
cessing.

Figure 3 shows the results of timing a single projec-
tion using three methods:

1. a program using Mesa3D and available computer
graphics hardware and DRI (ran on both the i810
and the GeForce2)

2. a program using Mesa3D, using software algo-
rithms

3. a program running the equivalent VideoOrbits al-
gorithm

Thus, an additional program is discussed here, which
uses the software implementation of Mesa3D (actually
the Mesa3D program is the same as the DRI program,
with the direct rendering turned off). The software
Mesa3D was examined because it is considered to be
well optimized code for computer graphics applications.
Thus, computer vision algorithms can also benefit from
the speed and optimizations used in computer graphics
software. So on machines which may not benefit from
3D graphics acceleration, Mesa will still implement an
optimized software projection, and additionally this was
examined.

Figure 3: Projection times for VideoOrbits software, Mesa3D (using software rendering) and Mesa3D with DRI hardware rendering enabled.

For the plot of figure 3, the input image size was set,
and different projection parameters were given to the
three different programs, and the time taken to project
the image was recorded. The projections used were
independent rotations about each of the principle axis,
with a maximum rotation of 15 degrees about any axis.
From the data, the average speedup between VideoOr-
bits using DRI vs. using the CPU was ��������� . The av-
erage speedup between VideoOrbits and the Mesa soft-
ware rendering was � � 	�
�� and the average speedup be-
tween the Mesa software rendering and the DRI imple-
mentation was � �
�
�� . This speedup verifies that our
DRI implementation did indeed use the available graph-
ics hardware. For the Nvidia GeForce2 GPU, it was
noted that the first iteration had an extra 10 msec over-
head (for a 320x240 size texture), possibly due to a tex-
ture cache miss on the initial projection. Subsequent it-
erations took between 5-8 msecs.

Figure 4 shows the effect of hardware acceleration
on input images of different sizes, on the wearable com-
puter. For this figure, the projection parameters were
held constant, and the input image size was varied. In
all cases, the hardware accelerated program projected
the image faster than VideoOrbits. The smallest image
size was ��������
 and the largest input image size was
	�
�����
�
 � . The slope of a linear best fit line through the
plot is ��� ��� . Thus, for this range of input image sizes,

the hardware speedup was ��� ����� .
Figure 5 shows the effect of different projection pa-

rameters on the speed of the projection, on the wearable
computer. For this plot, the input image was held con-
stant, but the projection parameters were varied. The
larger projection times shown correspond with increas-
ing numbers of output pixels of the resulting image.
Thus, this plot is measuring the effects of increased
amounts of pixel interpolation, since large ouput images
required more pixel interpolation since there were more
output pixels. The slope of this graph was 	��

T
� . Slope

here may be interpreted as how well each of the pro-
grams using DRI and the CPU dealt with more interpo-
lation being required. Thus, the hardware was able to
handle increased amounts of interpolation 	��

T
��� faster

than the VideoOrbits software.

4 Conclusion

We have discussed the use of OpenGL to accelerate
the VideoOrbits camera based head–tracking algorithm.
VideoOrbits estimates the eight parameters of a projec-
tive coordinate transformation to spatially register two
frames of video from a camera free to pan, tilt, and rotate
about its optical axis. Because this coordinate transfor-
mation equivalently describes the projection of a rigid

Figure 4: Projection times for VideoOrbits using graphics hardware vs. the CPU
given varying image sizes. All images had identical projection parameters.

planar patch as seen by a camera at an arbitrary angle,
VideoOrbits is suitable for hardware acceleration using
commonly available 3D computer graphics hardware.
In each step of the parameter estimation, VideoOrbits
projects the input frames. This projection is equivalent
to the viewing of a texture mapped polygon in OpenGL.
Thus, the rigid planar patch was treated as a polygon,
and the image mapped onto the polygon as a texture.
The resulting image, viewed under an appropriately de-
fined perspective projection, was then read back from
the graphics hardware, and was used by the VideoOrbits
algorithm again. This hardware accelerated VideoOrbits
algorithm was implemented on a wearable computer,
and utilized the on–board 3D graphics chipset. From
the timing measurements, it is clear that in all cases the
hardware projection outperformed the software projec-
tion, generally speeding up image projection by a factor
of ��������� . The hardware benefit is greater with increas-
ing amounts of pixel interpolation. This shows that the
hardware can be effectively used to speed up repetitive
image registration algorithms.

Acknowledgements

We would like to acknowledge Chris Aimone and
Corey Manders for their help.

References

[1] Direct rendering interface. http://dri.sourceforge.net.

Figure 5: Projection times for VideoOrbits programs, one using graphics hard-
ware and the other the CPU. The algorithm was given a fixed input image and
the projection parameters were varied (resulting in larger output images).

[2] M. Artin. Algebra. Prentice Hall, 1995.
[3] Foley, vanDam, Feiner, and Hughes. Computer Graphics,

PRINCIPLES AND PRACTICE. THE SYSTEMS PRO-
GRAMMING SERIES. Addison-Wesley, second edition,
1990.

[4] R. Herpers, G. Verghese, K. Derpanis, R. McReady,
J. MacLean, A. Levin, D. Topalovic, L. Wood, A. Jepson,
and J. Tsotsos. Detection and tracking of faces in real
environments. In Proceedings of the International Work-
shop on Recognition, Analysis and Tracking of Faces and
Gestures in Real-Time Systems, Corfu, Greece, 1999.

[5] S. Mann and J. Fung. Videoorbits on eye tap devices for
deliberately diminished reality or altering the visual per-
ception of rigid planar patches of a real world scene. In
Proceedings of International Symposium on Mixed Real-
ity (ISMR2001), pages 48–55, March 14-15 2001.

[6] S. Mann, C. Manders, and J. Fung. Painting with looks:
Photographic images from video using quantimetric pro-
cessing. In ACM Multimedia 2002 (to appear in), Juan
Les Pins, France, December 1-6, 2002.

[7] S. Mann and R. W. Picard. Video orbits of the pro-
jective group; a simple approach to featureless esti-
mation of parameters. TR 338, Massachusetts In-
stitute of Technology, Cambridge, Massachusetts, See
http://hi.eecg.toronto.edu/tip.html 1995. Also appears in
IEEE Trans. Image Proc., Sept 1997, Vol. 6 No. 9, p.
1281–1295.

[8] J. Neider, T. Davis, and M. Woo. OpenGL Programming
Guide: The official guide to learning OpenGL. Addison-
Wesley, third edition, 1993.

[9] R. Y. Tsai and T. S. Huang. Estimating Three-
Dimensional Motion Parameters of a Rigid Planar Patch
I. IEEE Trans. Accoust., Speech, and Sig. Proc.,
ASSP(29):1147–1152, December 1981.

