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Although questions about social cohesion lie at the core of our discipline, definitions

are often vague and difficult to operationalize. Here, research on social cohesion

and social embeddedness is linked by developing a concept of structural cohesion

based on network node connectivity. Structural cohesion is defined as the minimum

number of actors who, if removed from a group, would disconnect the group. A

structural dimension of embeddedness can then be defined through the hierarchical

nesting of these cohesive structures. The empirical applicability of nestedness is

demonstrated in two dramatically different substantive settings, and additional theo-

retical implications with reference to a wide array of substantive fields are dis-

cussed.

“[S]ocial solidarity is a wholly moral phenom-
enon which by itself is not amenable to exact ob-
servation and especially not to measurement.”

—Durkheim ([1893] 1984:24)

“The social structure [of the dyad] rests immedi-
ately on the one and on the other of the two, and
the secession of either would destroy the
whole. . .. As soon, however, as there is a
sociation of three, a group continues to exist even
in case one of the members drops out.”

—Simmel ([1908] 1950:123)

UESTIONS SURROUNDING social

solidarity are foundational for soci-
ologists and have engaged researchers con-
tinuously since Durkheim. Researchers
across a wide spectrum of substantive fields
employ “cohesion” or “solidarity” as a key
element of their work. Social disorganization
theorists, for example, tout the importance
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of “community cohesion” for preventing
crime (Sampson and Groves 1989). Political
sociologists focus on how a cohesive civil
society promotes democracy (Paxton 1999;
Putnam 2000). Historical sociologists point
to the importance of solidarity for revolu-
tionary action (Bearman 1993; Gould 1991),
and that the success of heterodox social
movements depends on a cohesive critical
mass of true believers (Oliver, Marwell, and
Teixeira 1985). Social epidemiologists argue
that a cohesive “core” is responsible for the
persistence of sexually transmitted diseases
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1996). Worker solidarity is a key concept in
the sociology of work (Hodson 2001). So-
cial psychologists have repeatedly returned
to issues surrounding cohesion and solidar-
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1952; Roark and Shara 1989) and conse-
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Unfortunately, as with “structure”
(Sewell 1992), the rhetorical power of “co-
hesion” is both a blessing and a curse. Soci-
ologists are all too familiar with the prob-
lem: We study “cohesion” in almost all our
substantive domains, and in its ambiguity, it
seems to serve as a useful theoretical place-
holder. Ubiquity, however, does not equal
theoretical consistency. Instead, the exact
meaning of cohesion is often left vague, or
when specified, done in a particularistic
manner that makes it difficult to connect in-
sights from one subfield to another. We
identify one generalizable structural dimen-
sion of social solidarity. Although the con-
cept we develop is related in certain ways
to some, perhaps many, of the meanings of
“solidarity” or “cohesion” used in the litera-
ture, it is by no means intended to incorpo-
rate them all. Instead, we focus on only one
dimension. By carefully identifying one as-
pect of social solidarity, we hope to help
clarify one of the multiple meanings con-
tained in this ubiquitous idea.

The social network—based concept we de-
velop is theoretically grounded in insights
from Simmel ([1908] 1950) and Durkheim
([1893] 1984) and methodologically
grounded in classical graph theory (Harary
1969; Harary, Norman, and Cartwright
1965). D. White and Harary (2001) demon-
strate the formal logic by which graph-theo-
retic measures lend themselves to the study
of the structural dimension of social cohe-
sion. Here, we extend a definition of struc-
tural cohesion in its most general form, ap-
plicable to large-scale analyses in a variety
of settings, and provide an algorithm for its
use in empirical analyses. The implementa-
tion of our algorithm for measuring embed-
ded levels provides an operational specifica-
tion of one dimension of social embedded-
ness (Granovetter 1985, 1992), which allows
us to specify and explore empirically the
unique contribution of this dimension. Here
we focus on two empirical settings: friend-
ships among high-school students (Bearman,
Jones, and Udry 1996) and the political ac-
tivity of big businesses (Mizruchi 1992). For
adolescent friendships, we show that net-
work position predicts school attachment,
using structural cohesion to link the rela-
tional to the ideational components of soli-
darity in a dozen large networks. For the

smaller director-interlock network, we show
that joint network embeddedness leads dy-
ads to make similar political contributions,
linking network position to coordinated po-
litical action. In both cases, we find indepen-
dent effects for our conception of cohesion
net of commonly used alternative measures,
substantiating its unique contribution.

BACKGROUND AND THEORY
SCOPE

Analytically, solidarity can be partitioned
into an ideational component, referring to
members’ identification with a collectivity,
and a relational component (Dorian and
Fararo 1998), referring to the observed con-
nections among members of the collectivity.
This theoretical distinction, for example, al-
lowed Durkheim to link changes in the com-
mon consciousness to the transition from
mechanical to organic societies, although he
offered no clear measures for these concepts.
Research on commitment (Kanter 1968) or
perceived cohesion (Bollen and Hoyle 1990)
focuses directly on the ideational component
of social solidarity. Although often based on
an underlying relational theory, much of the
national—and community—Ilevel work on
social cohesion uses ideational indicators of
“community cohesion” (Paxton 1999;
Sampson and Groves 1989). Distinguishing
between the relational and ideational com-
ponents analytically does not imply a causal
precedence of one dimension over the other.
Empirically, these two dimensions (and per-
haps others) might mutually reinforce each
other. Whatever their ultimate causal rela-
tion, separating these two dimensions is a
prerequisite to identifying the relation be-
tween them. Here we leave the wider ques-
tion of “social solidarity” in the background
and focus instead on structural cohesion: a
single dimension of the relational compo-
nent of social solidarity.

Some of the ambiguity surrounding appli-
cations of “cohesion” and research on cohe-
sive groups involves differences in scale.
Although the theoretical importance of so-
cial cohesion is often cast at national levels
(Durkheim [1893] 1984; Putnam 2000),
most treatments of the relational dimensions
of cohesion have focused on small groups.
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Structural cohesion, however, is no less im-
portant at larger scales, although the rela-
tional connectivities that might define cohe-
sion cannot be equally dense. An advantage
of our concept of structural cohesion is that
it applies to groups of any size.! In so doing,
we add a new dimension to recent literature
on large-scale social networks (Barabasi and
Albert 1999; Newman 2001; Watts 1999)
and bridge insights about small-group struc-
ture to those at much larger scales.

Identifying cohesive structures is only one
part of analyzing structural cohesion, and a
more informative approach simultaneously
tells us how such groups relate to one an-
other. Our concept of structural cohesion
necessarily entails a positional analysis of
the resulting groups with respect to their
nesting within the population at large. Theo-
retically, the resulting concept of nestedness
captures one dimension of Granovetter’s
(1985, 1992) concept of social embedded-
ness. Like “solidarity,” “embeddedness” is a
multidimensional construct relating gener-
ally to the importance of social networks for
action. Embeddedness indicates that actors
who are integrated in dense clusters or mul-
tiplex relations of social networks face dif-
ferent sets of resources and constraints than
those who are not embedded in such net-
works. By specifying an exact structural in-
dicator for one dimension of social embed-
dedness, we move beyond orienting state-
ments and augment our ability to develop
cumulative scientific insights.

Here, we identify an important feature of
the relational dimension of social solidarity
that is applicable to groups of any size. Fol-
lowing Simmel, that feature is the extent to
which a group depends on particular indi-
viduals to retain its character as a group. The
relevant quantitative measure is the mini-
mum number of individuals whose contin-

! Because of the long history of small face-to-
face research on groups, we prefer to avoid the
use of the term “groups” altogether, in favor of
broader terms such as “collectivity” or “substruc-
ture” that carry much less theoretical baggage.
Such a substitution, however, results in decidedly
awkward writing. We thus maintain the use of
“group,” but remind readers that our concept is
not limited to the small face-to-face primary
group structures commonly referred to by the
term.

ued presence is required to retain the group’s
connectedness (for graph theoretical aspects,
see D. White and Harary 2001). For clarity
and theoretical consistency, we refer to this
relational aspect of social solidarity as struc-
tural cohesion. Structural cohesion simulta-
neously defines a group property character-
izing the collectivity, a positional property
that situates subgroups relative to each other
in a population, and individual membership
properties. Although we do not claim to cap-
ture the full range of either “solidarity” or
“embeddedness,” structural cohesion pro-
vides an exact analytic operationalization of
a dimension of each.

DEFINING STRUCTURAL COHESION

Research on social cohesion has been
plagued with contradictory, vague and diffi-
cult-to-operationalize definitions. Mizruchi
(1992, chap. 3) provides a useful discussion
of the conflation of “shared normative senti-
ments” and “objective characteristics of the
social structure” in definitions of cohesion
(also see Doreian and Fararo 1998; Mudrack
1989). Many of these definitions share only
an intuitive core that rests on how well a
group is “held together.” What does it mean,
for example, that cohesion is defined as a
“field of forces that act on members to re-
main in the group” (Festinger, Schachter,
and Back 1950) or “the resistance of a group
to disruptive forces” (Gross and Martin
1952)?7 Dictionary definitions of cohesion
rest on similar ambiguities, such as “[t]he
action or condition of cohering; cleaving or
sticking together” (Oxford English Dictio-
nary 2000). Although we might all agree that
cohesive groups should display “connected-
ness” (O’Reilly and Roberts 1977), what as-
pects of connectedness should be taken into
account?

For concepts of cohesion to be analytically
useful, we must differentiate the relational
togetherness of a group from the sense of to-
getherness that people express. Using only
subjective factors, such as a “sense of we-
ness” (Owen 1985) or “attraction-to-group”
(Libo 1953), fails to capture the collective
nature of a cohesive group (Mudrack 1989).
Conversely, many treatments that focus ex-
clusively on groups, such as the group’s abil-

ity to “attract and retain members,” com-
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mingle the relational and ideational compo-
nents of social solidarity. Conflating rela-
tional and ideational features of social soli-
darity in a single measure limits our ability
to ask questions about how the relational
component of solidarity affects, or is af-
fected by, ideational factors.

The ability to directly operationalize
structural cohesion through social relations
is one of the primary strengths of a relational
conception of social cohesion. The “forces”
and “bonds” that hold the group together are
the observed relations among members, and
cohesion is an emergent property of the re-
lational pattern.”

Based on this prior literature, a prelimi-
nary intuitive definition of structural cohe-
sion might read:

Definition I: A collectivity is structurally
cohesive to the extent that the social re-
lations of its members hold it together.

While we will sharpen the terms of defini-
tion 1 below, there are five important fea-
tures of this preliminary definition. (1) It fo-
cuses on what appears to be constant in pre-
vious definitions of cohesion: A property de-
scribing how a collection of actors is united.
(2) It is expressed as a group-level property.
Individuals may be embedded more or less
strongly within a cohesive group, but the
group has a unique level of cohesion. (3)
This concept is continuous. Some groups
will be weakly cohesive (not held together
well), while others will be strongly cohe-
sive. (4) Structural cohesion rests on observ-
able social relations among actors. And (5),
the definition makes no reference to group
size.

What, then, are the relational features that
hold collectivities together? Clearly, a col-
lection of individuals with no relations
among themselves is not cohesive. If we
imagine relations forming among a collec-
tion of isolated individuals we might observe
a moment when each person in the group is
connected to at least one other person in
such a way that we could trace a single path
from each to the other. Thus, a weak form of
structural cohesion starts to emerge as these
islands become connected through new rela-

2 This concept assumes that the dyadic relation
is a positive connection.

tions.®> This intuition is captured well by
Markovsky and Lawler (1994) when they
identify “reachability” as an essential feature
of relational cohesion. Additionally, as new
relations form within this minimally cohe-
sive group, we can trace multiple paths
through the group. Intuitively, the ability of
the group to “hold together” increases with
the number of independent ways that group
members are linked.

That cohesion seems to increase as we add
relations among pairs has prompted many
researchers to focus on the volume (or den-
sity) of relations within and between groups
(Alba 1973; Fershtman 1997; Frank 1995;
Richards 1995). There are two problems
with using relational volume to capture
structural cohesion in a collective. First,
consider again our group with one path con-
necting all members. We can imagine mov-
ing a single relation from one pair to another.
In so doing, the ability to trace a path be-
tween actors may be lost, but the number of
relations remains the same. Because volume
does not change but reachability does, vol-
ume alone cannot account for structural co-
hesion.

Second, the initial (and weakest) moment
of structural cohesion occurs when we can
trace only one path from each actor in the
network to every other actor in the network.
Now imagine that our ability to trace a chain
from any one person to another always
passes through a single person. This might
occur, for example, if all relations revolved
around a charismatic leader: Each person
might have ties to the leader, and be con-
nected only through the leader to every other
member of the group. While connected, such
groups are notoriously fragile. As Weber
([1922] 1978:1114) points out, the loss of a
charismatic leader will destroy a group
whose structure is based on an all-to-one re-
lational pattern. Thus, increasing relational
volume but focusing it through a single in-
dividual does not necessarily increase the
ability of the group to hold together, and in-

3 See Hage and Harary (1996) for a discussion
of this process among islands in Oceania. We
recognize that social groups can form from the
dissolution of past groups; the above discussion
is useful only in understanding the character of
structural cohesion.
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stead makes the network vulnerable to tar-
geted attack.*

Markovsky and Lawler (1994; Markovsky
1998) make a related point when they argue
that a uniform distribution of ties is needed
to prevent a network from splitting into mul-
tiple subgroups:

[T]he organization of [cohesive] group ties
should be distributed throughout the group
in a relatively uniform manner. This implies
the absence of any substructures that might
be vulnerable, such as via a small number of
“cut-points” to calving away from the rest
of the structure. (Markovsky 1998:345)

Such vulnerable substructures form when
network relations are focused through a
small number of actors. If pairs of actors are
linked to each other through multiple others,
the structure as a whole is less vulnerable to
this type of split.

Given the above, we amend our prelimi-
nary definition of structural cohesion to
make explicit the importance of multiple in-
dependent paths linking actors together:

Definition 2: A group is structurally cohesive
to the extent that multiple independent
relational paths among all pairs of mem-
bers hold it together.

While still preliminary, this new definition
provides a metric for structural cohesion that
reflects Simmel’s ([1908] 1950:135) discus-
sion of the supra-individual status of triads
over dyads. In a dyad, the existence of the
group rests entirely in the actions of each
member, as either member acting unilater-
ally could destroy the dyad by leaving. Once
we have an association of three, however, a
connected group remains even if one of the
members leaves. In triads, the social unit is
not dependent on a single individual, and
thus the social unit takes on new uniquely

4Recent research on large networks such as the
World-Wide Web finds that an extremely small
number of nodes are connected to an extremely
large number of partners. These networks depend
on high-volume actors to remain connected, and
targeted interventions (virus attacks in computer
networks, education and treatment effects in
sexually transmitted disease networks) will dis-
connect the network and disrupt flow (Barabdsi
and Albert 1999; Pastor-Satorras and Vespignani
2001).

social characteristics. Groups of any size
that depend on connections through a single
actor are at one end of definition 2 (weakly
cohesive), while those that rest on connec-
tions through two actors are stronger, and
those depending on connections through
many actors are stronger yet. The strongest
cohesive groups are those in which every
person is directly connected to every other
person (cliques), though this level of cohe-
sion is rarely observed except in small pri-
mary groups.’ Intuitively similar ideas moti-
vated earlier measures of social cohesion in
networks, such as Seidman and Foster’s
(1978) treatment of k-plexes (Seidman
1983). They argue that a key feature of
cliques that needs to be preserved in any
measure of group cohesion “is the robust-
ness of the structure. This property ... is
best characterized with reference to the de-
gree to which the structure is vulnerable to
the removal of any given individual” (p.
142). The k-plex characterization, however,
cannot ensure that this lack of vulnerability
is achieved.

To specify our concept of structural cohe-
sion, we need a language capable of accu-
rately expressing relational patterns in a
group. The language of graph theory pro-
vides this clarity. Because graph-theoretical
terms are unfamiliar to many, however, we
illustrate the definitions below with refer-
ence to Figure 1 following the definition. A
network is composed of actors, represented
as nodes in the graph, and the relations
among them, represented as edges. Struc-
tural cohesion depends on how pairs of ac-
tors can be linked through chains of rela-
tions, or paths. A path in the network is de-
fined as an alternating sequence of distinct
nodes and edges, beginning and ending with
nodes, in which each edge is incident with
its preceding and following nodes (Figure
la, {1>2—5—6}). We say that actor i can
reach actor j if there is a path in the graph
starting with i and ending with j (Figure la,
1 can reach 7 {1-53—6—7}, but 1 cannot
reach 11). Two paths from i to j are node-
independent if they have only nodes i and j

31t is important that our measure of structural
cohesion reaches a maximum with fully con-
nected cliques, linking us to previous concepts of
network cohesion.
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k=0 k=1

Figure 1. Examples of Connectivity Levels

in common (Figure la,{1—>3—6} and
{l1>2—>5—>6} are node independent but
{152—>5—6} and {1>52—>7—6} are not
node independent). If there is a path linking
all pairs of actors in the network, then the
graph is connected (Figures 1b through 1d).
A component of a network consists of all
nodes that can be connected to each other by
at least one path. Components are the mini-
mum setting for a cohesive structure. A
clique is a maximally connected subgraph in
which every member is directly connected to
every other member (Figure la, {12, 13,
14}). A cutset of a graph is a collection of
specific nodes that, if removed, would break
the component into two or more pieces (Fig-
ure 1b, node 7; Figure Ic, nodes 6 and 13).
A graph is k-connected (i.e., has node con-
nectivity k) and is called a k-component if it
has no cutset of fewer than k& nodes (Harary
1969:45-46). In graph-theoretic terminol-
ogy, a 2- or biconnected component is called
a bicomponent (Figure 1c) and a 3-con-
nected component a tricomponent (Figure
1d).% Any k-component is either a clique or

6In Harary’s terminology, for example, an iso-
lated pair of connected individuals is not 2-con-
nected and do not constitute a bicomponent. The
algorithmic and computer science literature con-
stitute a variant usage in which a k-component is
any graph that cannot be disconnected by re-
moval of fewer than k£ nodes, hence a bicom-
ponent, for example, includes an isolated pair of
connected individuals. It is Harary’s usage and

must have at least two nonadjacent nodes
connected by paths, all of which must pass
through a cutset of k other nodes (in Figure
1c there are two such paths connecting 3 and
13: {356—11—-12—13} and {3—59—13}).
What is not so obvious, constituting one of
the deepest theorems about graphs, is that a
k-connected graph (i.e., having a cutset with
exactly £ members) also has at least k node-
independent paths connecting every pair of
nodes, and vice versa (see Harary 1969 for
Menger’s proof).’

not the variant usage, that lends itself to discus-
sion of cohesion in terms of k-components.

7 D. White and Harary (2001) formalize the
definition of structural cohesion, review the cri-
tiques of alternate measures of cohesive sub-
groups, and then discuss the relation between
connectivity and density. They also examine a
second but weaker dimension upon which such
groups could be arranged that relates to edge con-
nectivity (also see Borgatti, Everett, and Shirey
1990; Wasserman and Faust 1994), measured by
the minimum number of edges that must be re-
moved in a connected group that will result in its
disconnection. It can be shown that a graph of
any level of edge connectivity may still be sepa-
rable by removal of a single actor, which means
that the unilateral power of actors can be high
even when there are many relations connecting
people. We differ from D. White and Harary
(2001) by generalizing the theoretical links to
social solidarity, developing the link between
nestedness and embeddedness, providing an al-
gorithm to facilitate empirical research using co-
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Based on the intuitive notions captured in
Definition 2 and the formal graph properties
presented above, we can now provide a final
definition of structural cohesion:

Definition 3a: A group’s structural cohesion
is equal to the minimum number of ac-
tors who, if removed from the group,
would disconnect the group.

A group is cohesive to the extent that it is
robust to disruption, which is captured by
node connectivity. For each connectivity
value (k) observed in a given network, there
is a unique set of subgroups with this level
of structural cohesion. Because of the formal
equality between the size of the cutset and
the number of node-independent paths, the
“disconnect” version of Definition 3a can be
restated without any loss of meaning in “held
together” terms as:

Definition 3b: A group’s structural cohesion
is equal to the minimum number of in-
dependent paths linking each pair of ac-
tors in the group.

This pair of equivalent definitions of
structural cohesion retains all five aspects of
our original intuitive definition of structural
cohesion. A collection of actors is united
through relational paths that bind nodes to-
gether. Node connectivity is a group-level
property (a network or k-component as a
whole is k-connected), but individuals can be
more or less strongly embedded within the
group (as the network may admit to nested
(k + I)—connected subgroups). This concep-
tion scales, ranging from O (not connected)
to n—1 (a complete clique), and applies to
networks of any size.

Structural cohesion is weaker to the de-
gree that connectivity depends on a small
number of actors. Such graphs are vulner-
able to the activity of fewer and fewer mem-
bers. As node connectivity increases, vulner-
ability to unilateral action decreases. Based
on Simmel’s discussion of the dyad, we ar-
gue that a connectivity of 2 (a bicomponent)
is the minimum distinction between weak
and stronger structurally cohesive groups,
which are ranked by their k-connectedness.
Figure 1 presents examples of networks with

hesive blocking, and expanding the empirical ap-
plication of these measures to new settings.

differing levels of structural cohesion. Note
that in each of these three groups the num-
ber of relations is held constant, but the
edges are arranged such that structural cohe-
sion increases from left to right.

COHESIVE BLOCKING

An algorithm for identifying structurally co-
hesive groups is described in Appendix A.
Identification involves a recursive process:
One first identifies the k-connectivity of an
input graph, then removes the k-cutset(s) that
hold(s) the network together. One then re-
peats this procedure on the resulting sub-
graphs, until no further cutting can be done.
As such, any (k+[)—connected set embedded
within the network will be identified. More-
over, each iteration of the procedure takes us
deeper into the network, as weakly connected
nodes are removed first, leaving stronger and
stronger connected sets, uncovering the
nested structure of cohesion in a network.

This search procedure can result in two
types of subgroups. On one hand, we may
identify groups that “calve away” from the
rest of the population, such as those dis-
cussed by Markovsky and Lawler (1994). In
such cases, cohesive groups rest “side-by-
side” in the social structure, one distinct
from the other. This is the kind of descrip-
tion commonly used for primary social
groups (Cooley 1912), which we expect to
exhibit high levels of structural cohesion.
Alternatively, structurally cohesive groups
could be related like Russian dolls — with in-
creasingly cohesive groups nested inside
each other. The most common such example
would be a group with a highly cohesive
core, surrounded by a somewhat less cohe-
sive periphery, as has been described in
widely ranging contexts (Borgatti 1999). A
common structural pattern for large systems
might be that of hierarchical nesting at low
connectivity levels and nonoverlapping
groups at high connectivity.

To gain an intuitive sense for the cohesive
group detection procedure, consider the ex-
ample given in Figure 2. This network has a
single component inclusive of all nodes.
Embedded within this network are two
biconnected components: nodes {1-7, 17—
23} and {7-16}, with node 7 involved in
both. Within the first bicomponent, however,
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Figure 2. Nested Connectivity Sets

members {1-7} form a 5-component and
members {17-23} form a 3-component.
Similarly, nodes {7, 8, 11, and 14} form an-
other 3-component (a four-person clique)
within the second bicomponent, while the
remainder of the group contains no sets more
strongly connected than the bicomponent.
Thus, the group structure of this network
contains a 3-level hierarchy, which is pre-
sented in Figure 3.

Because connectivity sets can overlap,
group members can belong to multiple
groups. Although observed overlaps at high
levels of connectivity may be rare, any ob-
served overlaps are likely substantively sig-
nificant.® If an individual belongs to more

8 Some researchers consider overlapping sub-
groups too empirically vexing to provide useful
analysis. It is important to point out that (1) k-
components are strictly limited in the size of such
overlaps, making the substantive number of such
intermediate positions small—especially com-
pared with cliques; (2) that each such position,
because of its known relation to the potential
flow paths and cycle structure of the network,
can be theoretically articulated in ways that are
impossible for clique overlaps; and (3) even
when overlaps are empirically difficult to handle,
they may well be an accurate description of rela-

than one maximal k-cohesive group, that in-
dividual is part of a unique subset of k —/ or
fewer individuals whose removal will dis-
connect the two groups. Members of such
bridging sets are positionally equivalent
with respect to the larger cohesive sets that
they bridge.’ As such, a positional and rela-
tional structure comes out of the analysis of
cohesive groups. These groups are much
larger, fewer, and easier to distinguish than
are traditional sociological cliques. This pro-
cedure provides some of the same theoreti-
cal purchase that blockmodels were de-

tionship patterns. Arguments that relative density
groups (cf. Frank 1995) solve this problem by
assigning each actor to their preferred group
(based on number of nominations) fail to account
for people who have ties across many subgroups,
such that the total number of ties to people in
other groups is higher than the number of ties to
people in the group they have been assigned to.
?1In Figure 2, for example, only the removal of
node 7 will disconnect the 1-component, removal
of {5, 7},{21, 19}, {5, 19},{21, 7} will discon-
nect the bicomponent along similar lines, while
removal of only {8, 10} will disconnect 9 from
the rest, only {14, 16} will disconnect 15 from
the rest, and only {10, 16} will disconnect 13
from the rest, and so forth (see Appendix A).
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{7,8,9, 10, 11 {1,2,3,4,5,6,7,
12,13, 14, 15, 16} 17, 18, 19, 20, 21,
22, 23}
(7,8, 11,14} 1,2, 3,4, {17, 18, 19, 20,
5,6,7} 21, 22, 23}

Figure 3. Cohesive Blocking for the Network in Figure 2

signed to provide (Burt 1990; Lorrain and
White 1971; H. White, Boorman, and
Breiger 1976), but focuses on subgraphs that
may overlap rather than on partitions of
nodes.'? Because this method provides the
ability to both identify cohesive groups and
identify the position of each group in the
overall structure, we call the method cohe-
sive blocking. It is important to note the flex-
ibility of this approach. The concept of co-
hesion presented here provides a way of or-
dering groups within hierarchically nested
trees, with traditional segmented groups oc-
cupying separate branches of the cohesion
structure (recall Figure 3), but allowing
overlap between groups in different
branches (e.g., node 7 in Figure 3). The abil-
ity to accommodate both nested and seg-
mented structures within a common frame is
a strength of our model.

RELATION OF COHESION TO
SOCIAL EMBEDDEDNESS

A nested concept of cohesion provides a di-
rect link between structural cohesion and an
element of social embeddedness (Grano-

10 Qverlaps are crucial to cohesive structures.
Ordinarily we think of social groups as designa-
tions for sets of individuals. Structural cohesion
identifies groups in terms of sets of relationships,
as represented by edges in the graph. For ex-
ample, bicomponents may result in a partition of
edges (not individuals) allowing people to be in
multiple cohesive groups. It is for this reason that
cohesive blocking cannot generally be subsumed
as a form of blockmodeling: Cohesive blocks
may overlap and do not form partitions.

vetter 1985, 1992). The general concept of
embeddedness has had a significant influ-
ence in current sociological research and
theory. Although used most often in eco-
nomic sociology (Baum and Oliver 1992;
Portes and Sensenbrenner 1993; Uzzi 1996,
1999) or stratification (Brinton 1988), em-
beddedness has been used to describe social
support (Pescosolido 1992), processes in
health and health policy (Healy 1999; Ruef
1999), family demography (Astone et al.
1999), and the analysis of criminal networks
(Baker and Faulkner 1993; McCarthy,
Hagen, and Cohen. 1998). Most treatments
of embeddedness refer to the constraining
effects of social relations, contrasting “arms-
length relations” (Uzzi 1996, 1999) or “at-
omized individuals” (Granovetter 1985,
1992) to action that is embedded in social
relations.!! Embeddedness is often used to
claim a broad orientation to theories of so-
cial action, delineating a space for action be-
tween “undersocialized” perspectives that
treat actors as completely independent util-
ity maximizers and “oversocialized” per-
spectives that treat actors as cultural dupes.

' “Embeddedness™ suffers from some of the
same ambiguity evident in discussions of solidar-
ity and cohesion, with the term being used to de-
note many different aspects of the importance of
relationships for social action. While some re-
searchers have keyed their definition of embed-
dedness directly to a given type of action out-
come, we prefer a concept of embeddedness that
lets us test whether a particular pattern of rela-
tions shapes action, instead of defining embed-
dedness in terms of the resulting constraint.
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To move from orienting statement to em-
pirical investigation, we must identify clear
dimensions of embeddedness that would ad-
mit to empirical operationalization. Grano-
vetter (1992) points to a key division be-
tween “local” and “structural” embedded-
ness:

“Embeddedness” refers to the fact that eco-
nomic action and outcomes, like all social
action and outcomes, are affected by actors’
dyadic (pairwise) relations and by the struc-
ture of the overall network of relations. As a
shorthand, I will refer to these as the rela-
tional and the structural aspects of embed-
dedness. The structural aspect is especially
crucial to keep in mind because it is easy to
slip into “dyadic atomization,” a type of re-
ductionism. (P. 33, italics in original)

Granovetter (1992) further specifies his un-
derstanding of structural embeddedness as
the degree to which actors are involved in
cohesive groups:

[T]o the extent that a dyad’s mutual contacts
are connected to one another, there is more
efficient information spread about what
members of the pair are doing, and thus bet-
ter ability to shape behavior. Such cohesive
groups are better not only at spreading in-
formation, but also at generating normative,
symbolic, and cultural structures that affect
our behavior.” (P. 35)

Granovetter’s concept invokes transitivity
(Davis 1963; Holland and Leinhardt 1971;
Watts 1999), focusing on the pattern of rela-
tions among a focal actor’s contacts. One
need not limit structural embeddedness to an
actor’s direct neighborhood, however, but
can extend the notion of embeddedness in a
cohesive group to the wider social network
(Frank and Yasumoto 1998). The concept of
k-connected groups provides a clear
operationalization of a structural aspect of
embeddedness through the degree to which
actors’ partners (or their partners’ partners)
are connected to one another through mul-
tiple independent paths. As such, because
cohesive groups are nested within one an-
other, then each successive k-connected set
is more deeply embedded within the net-
work. This deep connectivity nicely captures
the intuitive sense of being involved in rela-
tions that are, in direct contrast to “arms-
length” relations, structurally embedded in a
social network (Uzzi 1996). As such, one as-

pect of structural embeddedness—the depth
of involvement in a cohesive structure—is
captured by this nesting. We define an
actor’s nestedness in a social network as the
deepest cutset level within which the actor
resides.\?

ALTERNATIVE APPROACHES TO
STRUCTURAL COHESION

Node connectivity differs markedly from
other approaches to identifying cohesive
groups in social networks.'> While previous
work on structural cohesion was motivated
by questions of graph vulnerability (Seidman
1983; Seidman and Foster 1978), the result-
ing empirical measures could not ensure a
nonvulnerable graph. Group identification
methods based on number of interaction part-
ners (k-plexes, k-cores), minimum within-
group distance (N-cliques), or relative in-
group density, may be structurally cohesive,
but are not necessarily so. In every case, the
method used to identify groups cannot dis-
tinguish multiconnected groups from those
vulnerable to the removal of a single actor.
As such, any empirical application of these
methods to a theoretical problem of struc-
tural cohesion risks ambiguous findings. By
distinguishing structural cohesion from fac-
tors such as density or distance, we can iso-
late the relative importance of connectivity
in social relations from these other factors.
Distance between members, the number of
common ties, and so forth might affect out-
comes of interest, but our ability to extend
social theory in formal network terms de-
pends on our ability to unambiguously at-
tribute social mechanisms to network fea-
tures. Connectivity provides researchers with
the ability to disentangle the effects of struc-
tural cohesion from other network features.
Using connectivity to capture a key di-
mension of social cohesion is not a new idea,

12 Similarly, an actor’s nestedness in a cohe-
sive group is defined as the deepest cutset level
within that group in which the actor resides.

13D. White and Harary (2001) compare node
connectivity approaches to many others, using
data on Zachary’s Karate Club as an exemplar. A
detailed comparison of each alternative method
for measuring cohesion that expands on those D.
White and Harary (2001), with multiple ex-
amples, is available from the authors on request.



STRUCTURAL COHESION AND EMBEDDEDNESS 113

though most previous approaches have fo-
cused on edge connectivity (Borgatti,
Everett, and Shirey 1990; Wasserman and
Faust 1994). D. White and Harary (2001)
discuss the formal links between node and
edge connectivity in detail. Briefly, a graph
has edge connectivity £ if it has no cutset of
k—1 edges, and, by Menger’s Theorem,
there are k edge-independent paths (as op-
posed to node-independent paths) connect-
ing every pair of nodes in the graph. Al-
though the two concepts might seem intu-
itively similar, they can result in radically
different assessments of group cohesion.
Consider as an example Figure 1b, which is
2-edge—connected. By simply adding ties
from node 7, one could increase edge con-
nectivity dramatically, but the graph as a
whole would still depend entirely on node 7
to remain connected. As we discuss in more
detail below, this kind of dominating central
node would increase power inequality in the
network and likely highlight divisions within
the network.

These substantive weaknesses in the edge
connectivity notion may explain why so few
people have used it empirically, or have
found significant results with this method.
Given the formal similarity between node
and edge connectivity, why hasn’t node con-
nectivity been used before now? Although
many reasons are possible, including the
discipline’s general focus on small primary
groups, the technical ability to identify high-
connectivity sets may be largely responsible
for its lack of use. Harary et al. (1965:25)
were the first to propose node connectivity
as a measure of cohesion. A fast algorithm
to identify tricomponents was developed by
computer scientists in 1973 (Hopcroft and
Tarjan 1973), though it was never imple-
mented by social scientists, and the ability
to identify bicomponents and pairwise node
connectivity is only now implemented in the
most popular network software (Borgatti et
al. 2002). The ability to identify the full con-
nectivity of a graph as well as all cutsets is a
recent phenomenon, however. The algorithm
presented in Appendix A combines all the
necessary elements for a full cohesive block-
ing, and in addition, provides a measure of
structurally cohesive embedding. Thus,
while the graph-theoretic ideas surrounding
our approach to structural cohesion were in-

troduced in the literature more than 35 years
ago, the ability to empirically employ these
ideas has only recently become available.
Given the historical focus on small
groups, is it reasonable to argue for “cohe-
sion” in aggregates of many thousands of
nodes? One might argue, for example, that a
single loop connecting 1,000 people is not
very cohesive. Why and when would such a
graph be considered cohesive? The answer,
as Markovsky and Lawler (1994) suggest,
depends on the implicit comparison network.
Clearly, the substantive social character of a
10-person group differs from that of a 1,000-
person group. Comparison with a small pri-
mary group will always give the impression,
if it has high density, that a large group with
lower density is less cohesive. We argue,
however, that this is the wrong comparison
to make—that it conflates analytically dis-
tinct dimensions of social structure, such as
density or mean path distance, and the num-
ber of independent connections. Holding the
number of nodes and the density of a net-
work constant, the effect of greater node
connectivity is always to increase social co-
hesion. Structural cohesion unites networks,
independent of other factors such as size,
with “independence” having the same mean-
ing implied by most statistical models. Thus,
the correct comparison to make for a 1,000-
person bicomponent is with a 1,000-person
spanning tree (less cohesive) or 1,000 people
divided into 250 four-person groups (less
cohesive yet). Other implicit comparisons,
of course, are various baseline models of
randomness. In a network of 1 million nodes
and 2 million edges, bicomponents in the
range of 1,000 persons will be common,
while a clique of 10 is an extremely rare
event in a random network of 30 nodes and
50 edges. For a structurally cohesive group
to be substantively significant within a net-
work,!* whatever its number of nodes and

14 We do not take up here the evaluation of sta-
tistical significance. D. White and Harary (2001)
show that adding conditional density to node
connectivity provides a continuous measure of
connectivity that allows for comparability across
networks of different sizes. An alternative ap-
proach to standardizing structural cohesion in-
volves developing implicit comparison networks
(also see Markovsky and Lawler 1994), such as a
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number of edges, it must stand out against
the background of a relevant baseline model
of randomness.

How does nestedness relate to other com-
mon network measures? To the extent that
nestedness captures the general location of
actors and differentiates prominent actors, an
actor’s nestedness might be thought of as a
type of centrality (Freeman 1977; Harary et
al. 1965; Wasserman and Faust 1994). How-
ever, depth in the network is a group-level
property that distinguishes it from centrality
measures. Second, because connectivity is
related to degree (each member of a k-com-
ponent must have at least k ties), nestedness
is necessarily correlated with degree. As we
show in the empirical examples below, how-
ever, nestedness is not equivalent to any of
these measures, either singly or in combina-
tion, and measures something very different.

Although there are multiple dimensions
upon which to compare a node connectivity
concept of cohesion to alternatives, the real
test of the idea is whether it adds anything
substantive to our understanding of empiri-
cal cases or gives rise to new theoretical hy-
potheses about social structure. Below we
demonstrate the empirical value-added of
our hierarchical concept of the relational
component of solidarity in two radically dif-
ferent settings and then discuss further theo-
retical implications of structural cohesion.

TWO EMPIRICAL EXAMPLES:
HIGH SCHOOLS AND
INTERLOCKING DIRECTORATES

To demonstrate the empirical relevance of
cohesive blocking, we use data from two dif-
ferent types of networks. First, we use data
on friendships among high school students
taken from the National Longitudinal Study
of Adolescent Health (Add Health).!> This

random network with similar degree distribution
or transitivity levels, which might be determined
mathematically in simple cases (Newman,
Strogatz, and Watts 2001), or through Monte
Carlo simulations as conditioning becomes more
complex.

15 This research is based on data from the Add
Health project, a program project designed by J.
Richard Udry (PI) and Peter Bearman, and
funded by grant PO1-HD31921 from the National
Institute of Child Health and Human Develop-

example illustrates how cohesive groups can
be identified in large settings based on
friendship, one of the most commonly stud-
ied network relations. The second example
uses data on the interlocking directorate net-
works of 57 large firms in the United States
(Mizruchi 1992). Because business solidar-
ity has been an important topic of research
on interlocks, we apply our method to this
network and show how structural cohesion
relates to similar political activity behaviors.
Of course, there is not space here to treat the
subtle theoretical issues surrounding each of
these substantive areas. Instead, the analy-
ses below are designed to highlight how
structural cohesion can add to empirical re-
search in widely differing research settings.

STRUCTURAL COHESION IN ADOLESCENT
FRIENDSHIP NETWORKS

Add Health is a school-based study of ado-
lescents in grades 7 through 12. A stratified
nationally representative sample of all pub-
lic and private high schools (defined as
schools with an 11" grade) in the United
States with a minimum enrollment of 30 stu-
dents was drawn from the Quality Education
Database (QED) in April 1994 (Bearman et
al. 1996). Network data were collected by
providing each student with a copy of the
roster of all students for their school. Stu-
dents identified up to 5 male and 5 female
(10 total) friends from this roster.!® Here we

ment to the Carolina Population Center, Univer-
sity of North Carolina at Chapel Hill, with coop-
erative funding from 17 other agencies. Persons
interested in obtaining data files from the Na-
tional Longitudinal Study of Adolescent Health
should contact Add Health, Carolina Population
Center, 123 West Franklin Street, Chapel Hill,
NC 27516-2524 (addhealth@unc.edu).

16 The maximum number of nominations al-
lowed was 10, but this restriction affected few
students. For all students, mean out-degree is
4.15 with a standard deviation of 3.02, 3 percent
of students nominated 10 in-school friends, 23
percent nominated 5 in-school male friends, and
25 percent named 5 in-school female friends.
Previous research suggests that close friendship
groups have about 5 members (Cotterell 1996;
Dunphy 1963). Relations are likely to fall within
gender. For the Add Health data as a whole (net
of other dyad attributes such as race, joint activi-
ties, and transitivity) same-sex ties are about 1.6
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use data on more than 4,000 students taken
from a dozen schools with between 200 and
500 students (mean = 349), providing a di-
verse collection of public (83 percent) and
private schools from across the United
States.!”

NESTEDNESS AND SCHOOL ATTACH-
MENT. For each school, we employed the
cohesive blocking procedure described in
Appendix A to identify all connectivity sets
for each school friendship network. At the
first level, we have the entire graph, which
is usually unconnected (because of the pres-
ence of a small number of isolates). Most of
the students in every school are contained
within the largest bicomponent, and often
within the largest tricomponent. As the pro-
cedure continues, smaller and more tightly
connected groups are identified. In these
data, at high levels of connectivity (k > 5),
subgroups do not overlap. This implies set-
tings with multiple cores, differentially em-
bedded in the overall school networks. When
no further cuts can be made within a group,
we have reached the end of the nesting struc-
ture for that set of nodes. The level at which
this cutting ceases describes the nestedness
for each member of that group.

Nestedness within the community should
be reflected in a student’s perception of his
or her place in the school. The Add Health
in-school survey asks students to report on
how much they like their school, how close
they feel to others in the school and how
much they feel a part of the school.!® Here,

times more likely than cross-sex ties (Moody
2001:712). For purposes of identifying connec-
tivity sets, we treat the graph as undirected. The
algorithms needed for identifying connectivity
can be modified to handle asymmetric ties. It was
for directed graphs that Harary et al. (1965) de-
veloped their concept of cohesion as connectiv-
ity, although they offered no computational al-
gorithms.

17 This sample represents all schools in the data
set of this size. The selected size provides a nice
balance between computational complexity and
social complexity, as the schools are large
enough to be socially differentiated and small
enough for group identification to be carried out
in a reasonable amount of computer time.

'8 These are three items from the Perceived
Cohesion Scale (Bollen and Hoyle 1990), and
have a Chronbach’s alpha reliability of .82. The
confirmatory factor loadings for the three vari-

we use the mean score of the three items as
a measure of school attachment. Building on
Markovsky and Lawler’s (1994) discussion
of solidarity and cohesion, there ought to be
a significant positive relation between
nestedness in the network and school attach-
ment, net of any other factor that might be
associated with school attachment
(Markovsky 1998; Markovsky and Chaffee
1995; Markovsky and Lawler 1994; Paxton
and Moody forthcoming).

We control for other variables that might
affect a student’s school attachment. Be-
cause gender differences in school perfor-
mance and school climate are well known
(Stockard and Mayberry 1992), we expect
female students to have lower school attach-
ment than males. As students age we expect
the school to become a less salient focus of
their activities, and grade in school is also
controlled.'” Students who perform well in
school or who are involved in many extra-
curricular activities should feel more com-
fortable in schools. Because students from
small schools might feel more attached than
students from large schools, we test a
school-level effect of size on mean school
attachment.

A significant feature of our approach is
that we can differentiate the unique effects
of network features that are often used to
measure “cohesion” in empirical work. First,
the number of contacts a person has (degree
centrality) reflects their level of involvement
in the network. Substantively, we expect that
those people with many friends in school are
more likely to feel an integrated part of the
school. Second, having friends who are all
friends with one another is an important fea-
ture of network involvement. As such, the
density of one’s personal (local) network is
tested. Third, we expect that those people
who are most central in the network should
have a greater sense of school attachment.
Hence, betweenness centrality is tested. Fi-

ables are all positive, significant, and close in
magnitude. For similar work, see Resnick et al.
(1997). The other three items used for Bollen and
Hoyle’s scale were not included in the Add
Health school survey.

19 Because school friendships tend to form
within grade, controlling for grade in school cap-
tures an important focal feature of the in-school
network.
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nally, it may be the case that the lived com-
munity of interest for any student is that set
of students with whom they interact most
often. We used NEGOPY (Richards 1995) to
identify density-based interaction groups
within the school, and use the relative group
density to measure this effect.?’ If our struc-
tural aspect of nestedness captures a unique
dimension of network embeddedness, as our
discussion above implies, then, controlling
for each of these features, we would expect
to find an independent effect of structurally
cohesive nestedness on school attachment.?!

Table 1 presents HLM coefficients for
models predicting school attachment from
nestedness level, school activity, demo-
graphic, and other network factors. Model 1
is a baseline model containing only attribute
and school variables. As expected, females
and students in higher grades tend to have
lower school attachment, while students who
are involved in many extracurricular activi-
ties or who get good grades feel more at-
tached to the school. The coefficient for
school size, while negative, is not statisti-
cally significant. In Model 2, our measure of
network nestedness is added to the model.?
We see that there is a strong positive rela-
tion between nestedness and school attach-
ment. (Note that the size of the standardized
coefficient for nestedness is the largest in
this model.) Testing the difference in the de-
viance scores between Model 1 and Model 2
suggests that including nestedness improves
the fit of the overall model. In Models 3

20 We thank an anonymous reviewer for sug-
gesting this specification, which uses fewer de-
grees of freedom than an alternative test that uses
a dummy variable for each identified subgroup
in the school. Tables with the alternative specifi-
cation are available on request and show no sub-
stantive difference in the nestedness effect.

21 We thank an anonymous reviewer for sug-
gesting a 2-level hierarchical linear model to test
for these relations, with students nested in
schools. The model was specified to allow coef-
ficients to vary randomly across schools, with the
school-level intercept (substantively, mean
school attachment) regressed on school size.

22 1n addition to the nestedness level, we also
tested a model using the largest k-connectivity
value for each student. The results are very simi-
lar. Students involved in high-cohesion groups
had higher levels of school attachment than oth-
ers.

through 6, we test the specification includ-
ing our measure and each of the four alter-
native network measures. In each case,
nestedness remains positive, significant, and
strong, while inclusion of the alternative
measures adds little explanatory power (as
seen by testing against Model 2). In Model
7, we include all potentially confounding
network variables, and the relation between
nestedness and attachment remains. The
largest change in the coefficient for
nestedness comes with the addition of de-
gree, which is likely due to collinearity, be-
cause every member of a k-component must
have degree > k.

These findings suggest that individuals are
differentially attached to the school as a
whole, and thus the school is differentially
united, through structural cohesion. This
finding holds net of school-level differences
in school attachment, the number of friends
people have, the interaction densities among
their immediate friends or of their larger
density-based interaction group, and their
betweenness centrality level. That these
other factors do not continue to contribute
additionally to school attachment implies a
unique effect of structural cohesion that
other methods would wrongly have attrib-
uted to the other measures of network struc-
ture.

COHESION AMONG LARGE AMERICAN
BUSINESSES. A long-standing research tra-
dition has focused on the interlocking direc-
torates of large firms (Mizruchi 1982, 1992;
Palmer, Friedlan, and Singh 1986; Roy
1983; Roy and Bonacich 1988; Useem
1984). An important question in this litera-
ture, “at the core of the debate over the ex-
tent to which American society is demo-
cratic” (Mizruchi 1992:32), is to what extent
business in the United States is unified and,
if so, whether it is collusive. If businesses
collude in the political sphere, then democ-
racy is threatened. Yet much of the literature
has been vague in defining exactly what con-
stitutes business unity, and thus empirical
determination of the extent and effect of
business unity (and possible collusion) is
hard to identify.

Without treading on the issue of collusion
per se, we approach the question of business
unity as a problem of structural cohesion.
Because structural cohesion facilitates the
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Table 1. Coefficients Predicting School Attachment from Network Embeddedness and Other
Independent Variables: Add Health, 1994
Independent Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Intercept 3.850™" 3.429" 3.3617" 3.467° 3.354™ 3.322" 3.379"
(.285) (.332) (.327) (.328) (.325) (.327) (.062)
School size* -.021 -.050 —-.038 —-.064 —.043 -.020 —-.058
(.063) (.068) (.067) (.068) (.070) (.066) (.062)
[-.015] [-.037] [-.027] [-.045] [-.030] [-.015] [-.041]
Female — 189" 148" 155" —.149" —.153" —.149™ —1617
(.04) (.001) (.041) (.042) (.042) (.043) (.044)
[-.100] [-.075] [-.078] [-.076] [-.078] [-.076] [-.082]
Grade in school -.077"" —.048" —.048" -.079" -.050" —-.046 -.051"
(.018) (.022) (.021) (.021) (.021) (.022) (.022)
[-.097] [-.059] [-.060] [-.060] [-.062] [-.059] [-.063]
Grade-point 1327 099" .095™ 102 1047 .099™ .099™
average (.025) (.022) (.023) (.022) (.022) (.023) (.023)
[.102] [.077] [.074] [.079] [.081] [.077] [.077]
Extracurricular 1157 .076™" 078" .076™" 075" 076" 076"
activities (.016) (.014) (.014) (.014) (.014) (.014) (.015)
[.229] [.152] [.156] [.152] [.149] [.151] [.152]
Nestedness — 0167 016" 0167 0117 0177 011
(.001) (.001) (.001) (.002) (.001) (.003)
[.279] [.277] [.268] [.201] [.283] [.181]
Local density — — .002 — — — .002
(.001) (.001)
[.038] [.046]
Betweenness — — — .030 — — -.021
centrality (.027) (.043)
[.023] [-.016]
Number of friends — — — — 021" — .029
(degree) (.010) (.014)
[.087] [.118]
Relative density — — — — — .001 —-.001
groups (.002) (.002)
[.006] [-.014]
Deviance ® 9,842.31  9,577.57"" 9,578.29  9,581.13  9,571.06  9,587.60  9,574.31

Note: Numbers in parentheses are standard errors; numbers in brackets are standardized coefficients.

2 School-level coefficient.

b Number of cases for level 1 = 3,606; number of cases for level 2 = 12.

“p <.05

flow of information and influence, coordi-
nated action, and thus political activity, ought
to be more similar among pairs of firms that
are similarly embedded in a structurally co-
hesive group. Mizruchi (1992) makes this
argument well and highlights the importance
of financial institutions for unifying business
activity. He identifies the number of indirect
interlocks between two firms as “the number
of banks and insurance companies that have
direct interlocks with both manufacturing
firms in the dyad” (p. 108). Using data on

“p <.01 “*p <.001 (two-tailed tests)

large manufacturing firms, we identify the
cohesive group structure based on indirect
interlocks and relate this structure to simi-
larities in political action.

The sample Mizruchi constructed consists
of 57 of the largest manufacturing firms
drawn from “the twenty major manufactur-
ing industries in the U.S. Census Bureau’s
Standard Industrial Classification Scheme”
in 1980 (Mizruchi 1992:91). In addition to
data on directorship structure, he collected
data on industry, common stockholding,
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governmental regulations, and political ac-
tivity. The question of interest is whether the
structure of relations among firms affects the
similarity of their behavior. To explore
whether firms that are similarly embedded
also make similar political contributions,
Mizruchi constructed a dyad-level political
contribution similarity score as a function of
the number of common campaign contribu-
tions.?> He modeled this pair-level similar-
ity as a function of geographic proximity,
industry, financial interdependence, govern-
ment regulations, and interlock structure.

A cohesive blocking of this network re-
veals that most firms are involved in a
strongly cohesive group, with 51 of the 57
firms members of the largest bicomponent.
The nestedness structure consists of a single
hierarchy that is 19 layers deep, and at the
lowest level (at which no further minimum
cuts can be made that would not isolate all
nodes), 28 firms are members of a 14-con-
nected component (the strongest k-compo-
nent in the graph).

Does joint membership in more deeply
nested subsets lead to greater similarity in
political contributions? To answer this ques-
tion, we add an indicator for the deepest
layer within which both firms in a dyad are
nested. Thus, if firm i is a member of the
second layer but not the third, and firm j is a
member of the fourth layer but not the fifth,
the dyad is coded as being nested in the sec-
ond layer. As with the school example, we
control for other network features. Table 2
presents the results of this model.

Model 1 replicates the analysis presented
in Mizruchi (1992), and in the remaining
models we add additional network indica-
tors.2* In the baseline model, we find that the

23 The score is calculated as

s. ="/
Y ‘nn;
VM,

)

where §;; = the similarity score, n; equals the
number of common campaign contributions, and
n; and n; equal the number of contributions firm i
and j make, respectively. The dyad-level analy-
sis is based on 1,596 firm dyads.

24 Following Mizruchi (1992:121) we use the
nonparametric quadratic assignment procedure
(QAP) to assess the significance level of the re-
gression coefficients. See Mizruchi (1992) for
measurement details.
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more financial stockholders two firms have
in common, the greater the similarity of their
political contributions. Additionally, indirect
interlocks through financial institutions or
jointly receiving defense contracts leads to
similarity of political action. In Model 2, we
add the nestedness measure.?> Net of the ef-
fects identified in Model 1, we find a strong
positive impact of cohesion within the indi-
rect interlock network. As in the school net-
works, we test for the potentially confound-
ing effects of degree and centrality.2® No ef-
fect of network degree is evident, but be-
tweenness centrality does evidence a moder-
ate association with political similarity.
When both variables are entered into the
model, the statistical significance of
nestedness drops slightly, but the magnitude
of the effect remains constant. Based on the
standardized coefficients, nestedness exhib-
its the strongest effect in each of the Models
2 through 5. The more deeply nested a given
dyad is in the overall network structure, the
more similar their political contributions.
The nestedness measure of structural cohe-
sion is a significant predictor of political
similarity, in addition to the effect of direct
adjacency created through financial inter-
locks.

Mizruchi (1992) identifies two potential
explanations for the importance of financial
interlocking on political behavior. Following
Mintz and Schwartz (1985), banks and fi-
nancial institutions may exercise control of
firms by seating representatives on their
boards. As such, two firms that share many
such financial ties face many of the same in-
fluencing pressures and therefore behave
similarly. A second argument, building on
the debate surrounding structural equiva-
lence and cohesion (Burt 1978, 1982), is that
actors in similar network positions (i.e., with
similar patterns of ties to similar third par-
ties) ought to behave similarly. As in our ar-
gument for structural cohesion, Friedkin
(1984) argues that influence travels through

2 If instead of the joint nestedness level, we
use the connectivity level (k) for the highest k
both members are involved in, we find substan-
tively similar results.

26 We cannot test for density-based subgroup
effects because NEGOPY assigns all members to
the same group. This is a result of the high aver-
age degree within this network.
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Table 2. QAP Coefficients Predicting Political Action Similarity from Network Embeddedness and
Other Dyad Attributes: 57 U.S. Manufacturing Firms, 1980

Independent Variable  Variable Description

Model 1 Model 2 Model 3 Model 4 Model 5

Proximity Headquarters located in same

state

Same primary
industry

Number of common two-digit
industries

Common industry

Market constraint Interdependence based on

transactions and concentration

Financial institutions that hold
stock in both firms

Common stockholders

Direct interlocks Board of directors overlaps

between firms

Regulated industries Primary membership in

regulated industry

Common recipient of defense
contracts

Defense contracts

Financial institutions with
which firms interlock

Indirect interlocks

Level of embeddedness in the
indirect interlock network

Nestedness level

Degree difference Absolute difference in degree

Centrality difference
ness centrality

Constant
R-square

Same primary two-digit industry

Absolute difference in between-

017 013 013 015 015
[.043]  [.032] [.034] [.039] [.039]
012 017 017 016 016
[.024] [.034] [.036] [.034] [.034]
—004  -.007 -.007 —.003 —.003
[-.008] [-.015] [-.015] [-.006] [-.006]
0112 .009%  .009%  .009%  .009%
[.098] [.080] [.082] [.083] [.083]
034" 029 028" 029"  .029°
[213] [.182] [.174] [.181]1 [.181]
021* 016 017& 018 018
[.047] [.036] [.037] [.041] [.041]
0368 .034% 032 .030 .030
[115]  [107] [.102]  [.096]  [.096]
084™ 083 082"  .082"  .082
[.170]  [.166] [.165] [.166]  [.165]
026" 010%™ .009 .007 .007
[.178] [.070] [.060] [.050] [.051]
- 004" 005" .004"  .004%
[201] [.257] [.203] [.202]
— — .001 — ~.00
[.087] [-.00]
— — — 010°  .010
[111]  [111]
A7 156" 1377 1447 1447
195 217 222 229 228

Source: Mizruchi (1992).

Note: Quadratic Assignment Procedure (QAP) determines significance levels based on permutation tests
and does not produce normal standard errors. Numbers in brackets are standardized coefficients.

* Coefficient is significant at p < .10. We report this significance level in keeping with Mizruchi [1992].

“p <.05 “p < .01 (two-tailed tests)

multiple paths and thus has an effect beyond
the direct link between two actors. His argu-
ment is supported by our finding that the
multiple, independent paths that link pairs of
structurally cohesive actors help transfer in-
formation among firms in a way that is able
to coordinate politically similar activity.

THEORETICAL IMPLICATIONS OF
STRUCTURAL COHESION

The above two empirical examples demon-
strate the empirical validity of a structural
conception of social cohesion. Because we
have created a formal specification for struc-
tural cohesion, we can link network structure

to actor mechanisms (such as information
flow) to derive further theoretical conse-
quences of structural cohesion. A defining
property of a k-component (by Menger’s
Theorem) is that every pair of actors in the
collectivity is connected by at least £ inde-
pendent paths. The presence of multiple
paths, passing through different actors, im-
plies that if any one actor is removed, alter-
native links among members remain to
maintain social solidarity. Information and
resources can flow through multiple paths,
making control of resources within the group
by a small (< k) number of people difficult.
Although many potential implications likely
follow in particular substantive areas, we fo-
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cus below on three broad types of sociologi-
cal questions: resource and risk flow, com-
munity and class formation, and power.

RESOURCE AND RISK FLOW

A focus on structural cohesion provides new
insights into diffusion, augmenting current
approaches that focus largely on network dis-
tance. The length of a path (number of edges)
is often considered critical for the flow of
goods through a network, as flow may de-
grade with relational distance. That is, the
probability that a resource flows between two
nonadjacent actors is equal to the product of
each dyadic transition probability along the
path(s) connecting them. When multiplied
over long distances, the efficacy of the infor-
mation diminishes, even if the pairwise trans-
mission probability is high. For example, the
probability that a message will arrive intact
over a six-step chain?’ when each dyadic
transmission probability is .9 will be .53. The
fragility of long-distance communication
rests on the fact that at any step in the com-
munication chain, one person’s failure to
pass the information will disrupt the flow.
For a structurally cohesive group, how-
ever, expected information degradation de-
creases with each additional independent
path in the network. For example, the com-
parable probability of a six-step communi-
cation arriving given two independent paths
is .78.2% As the number of independent paths
increases, the likelihood of the information
transmission increases. When the flow is not
subject to degradation, but only to interrup-
tion, increasing connectivity will provide
faster and more reliable transmission
throughout the network.?” In a high-connec-
tivity network, even if many people stop
transmission (effectively removing them-

27 This is the purported average acquaintance
distance among all people in the United States
(Milgram 1969).

28 We calculate this as the product of the dy-
adic probabilities for each path, minus the prob-
ability of transmission through both paths. Thus,
for two paths of length d, the formula is 2 (p;) -
(p;)*, where d is the distance. This is a simplifi-
cation, as dyadic transmission rates are often
variable and highly context-specific.

29 Computer viruses are an excellent example
of such flows.

selves from the network), alternate paths
provide an opportunity for spread.

Nonoverlapping (k+/)—cohesive sub-
groups within a larger k-connected popula-
tion have important implications for the
long-distance carrying capacity of the net-
work. Local pockets of high connectivity act
as amplifying substations for information (or
resource, or viral) flow that comes into the
more highly connected group, boosting a
signal’s strength,3® and sending it back out
into the wider population. This pattern di-
rectly reflects the core concept of sexually
transmitted diseases (Rothenberg et al.
1996), which may account for the high
prevalence of many STDs in the face of
quite low pair-wise transmission probabili-
ties. The observed patterns typical in small-
world graphs (Milgram 1969; Watts 1999)
are a natural result of local relational action
nested within a larger network setting. Thus,
processes based on the formal properties of
connectivity may account for many of the
observed substantive features of small-world
networks.

Social network researchers have tradition-
ally focused on small, highly connected
groups. Identifying connectivity as a central
element of cohesion frees us from focusing
on small groups by identifying patterns
through which influence or information can
travel long distances. The rise of electronic
communication and distributed information
systems suggest that distance will become
less salient as information can travel through
channels that are robust to degradation. By
extending our vision of cohesion from small
local groups to large extended relations, we
are able to capture essential elements of
large-scale social organization that have
only been hinted at by previous social net-
work research, providing an empirical tool
for understanding realistically sized lived
communities.

COMMUNITY AND CLASS FORMATION

Structural cohesion provides us with a use-
ful tool for understanding processes related

30 Signal amplification might depend on aver-
aging or combining degraded copies of the same
signal or message so as to filter noise, thus in-
creasing reliability.
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to the formation of social classes, ethnicity,
and social institutions. Although a long-
standing promise of network research
(Emirbayer 1997; Rapoport and Horvath
1961; H. White et al. 1976), the conceptual
tools needed to identify the empirical traces
of such processes have been sorely lacking.
In contrast, Brudner and White (1997)
showed that membership in a structurally
cohesive group based on marital and close
kinship ties among households in an Aus-
trian farming village was correlated with
stratified class membership, defined by
single-heir succession to ownership of the
productive resources of farmsteads and
farmlands.

Linking structurally cohesive subgroup
membership to institutions that provide for-
mal access to power suggests a new ap-
proach to the study of social stratification
and the state. D. White et al. (2002), for ex-
ample, identify an informally organized “in-
visible state” created by the intersections of
structurally cohesive groups across multiple
administrative levels. They show that those
who share administrative offices during
overlapping time spans build dense clique-
like social ties within a political nucleus
while maintaining sparse locally tree-like
ties with structurally cohesive groups (glo-
bally multiconnected) in the larger region
and community. The locally dense and the
globally sparse multiconnected ties act as
different kinds of amplifiers for the feedback
relations between larger cohesive groups and
their government representatives.

In his classic statement on the develop-
ment of social capital, Coleman (1988) ar-
gued that a closed-loop structure connecting
adolescents’ friends’ parents increases effec-
tive normative regulation in a community.
The key structural feature responsible for
this increased ability is that biconnected
components (loops) allow information to
flow freely throughout the community, al-
lowing normative ideas to be exchanged and
reinforced. Communities in which parents
are connected to each other only indirectly
through adolescents will likely have weaker
normative regulation. Adolescents in such
communities occupy a powerful position,
controlling the flow of information. This fact
is recognized by any teen that successfully
dupes parents into thinking they are at a

friend’s house while the friend similarly
claimed to be at theirs. In general, the emer-
gence of community through exchange oc-
curs when goods and information cycle
through the community, as evidenced clearly
in work on generalized exchange (Bearman
1997).

POWER

The substantive character of groups that are
vulnerable to unilateral action differs signifi-
cantly from that expected of groups with
multiple independent connections. The
group as a whole is vulnerable to the will
and activities of those who can destroy the
group by leaving. Moreover, actors that can
disconnect the group are also actors that can
control the flow of resources in the network.
As has long been known from Network Ex-
change Theory, networks with structural fea-
tures leading to control of resource flows
generate power inequality (Willer 1999).

In contrast to weak structurally cohesive
groups, however, collectivities that do not
depend on individual actors are less easily
segmented. The presence of multiple paths,
passing through different actors, implies that
if any one actor is removed, alternative links
among members still exist to maintain social
solidarity. Information and resources can
flow through multiple paths, making minor-
ity control of resources within the group dif-
ficult. As such, the inequality of power im-
plicit in weakly cohesive structures is not so
pronounced in stronger structures. In gen-
eral, structurally cohesive networks are char-
acterized by a reduction in the power pro-
vided by structural holes (Burt 1982), as lo-
cal holes are closed at longer distances, unit-
ing the entire group.

The development of “just-in-time” inven-
tory systems provides a compelling example.
When viewed as a network of resource
flows, the most efficient production systems
resemble spanning trees, with tight cou-
plings among plants. Under this structure,
labor has accentuated power because strikes,
which effectively remove the struck factory
from the production network, disconnect the
entire production line. Recent trends toward
“just-in-time” production processes are not
new, but were used extensively early in the
auto industry. It became clear, however, that



122 AMERICAN SOCIOLOGICAL REVIEW

this production structure gave labor power.
To counter, management expanded the pro-
duction network to include alternative
sources (other factories and storchouses),
building redundancy (i.e., structural cohe-
sion) into the system (Schwartz 2001).

CONCLUSION AND DISCUSSION

Social solidarity is a central concept in soci-
ology. We have argued that solidarity can be
analytically divided into an ideational com-
ponent and a relational component (and per-
haps others). We have defined structural co-
hesion as a measure of the relational compo-
nent. The essential substantive feature of a
strongly cohesive group is that it has a sta-
tus beyond any individual group member.
We operationalize this concept of social co-
hesion through the graph-theoretic property
of connectivity (Harary 1969; Harary et al.
1965), showing that structural cohesion in-
creases with each additional independent
path in a network.

When does cohesion start? Following au-
thors such as Markovsky and Lawler (1994),
we argue that cohesion starts (weakly) when
every actor can reach every other actor
through at least one relational path—the
paths that link actors are the social glue
holding them together. We show that struc-
tural cohesion scales in that it is weakest
when there is one path connecting actors,
stronger when there are two node-indepen-
dent paths, stronger yet with three node-in-
dependent paths, and finally when, for n ac-
tors, there are almost as many (n — 1) inde-
pendent paths between each pair.

Our conceptualization of structural cohe-
sion simultaneously provides an operation-
alization of one of the structural dimensions
of network embeddedness. Cohesive sets in
a network are nested, such that highly cohe-
sive groups are nested within less cohesive
groups. Because the process for identifying
the nested connectivity sets is based on iden-
tifying the most fragile points in a network,
those actors who are involved in the most
highly connected portions of the network are
often deeply insulated from perturbations in
the overall network. Given the theoretical
importance of the generalized concept of
embeddedness in sociology, a measure of
structural embeddedness is an important as-

set to help provide clear-cut empirical stud-
ies of embeddedness.

Our analysis of structural cohesion has fo-
cused on the basic network features of so-
cial cohesion, without regard to the particu-
lar features that might be relevant in any
given case. We suspect that researchers
could modify aspects of our structural con-
ception of cohesion as theory dictates. Thus,
in settings where flows degrade quickly, one
could account for the level of cohesion by
incorporating a measure of path length, tie
strength, or the ratio of connectivity to group
size. We caution, however, that much of the
theoretical power of our concept of cohesion
rests on the idea that multiple indirect paths
(perhaps routed through strongly cohesive
subgroups) can magnify signals such that
long distances can be united through social
connections. Additionally, although we ex-
pect that structurally cohesive groups will
also be stable groups, this expectation must
be tested empirically.

The qualitative relational feature we focus
on, grounded in Simmel ([1908] 1950), is
whether a group depends on particular indi-
viduals for its group status. The relevant
quantitative measure is the number of indi-
viduals whose involvement is required to
keep the group connected. Here we have ap-
plied our method in an effort to show how
cohesion might be profitably used in differ-
ent types of empirical settings. The settings
tested here are clearly only a small subset of
the types of settings in which cohesion might
be important, and our tests have focused on
only one dimension of a decidedly complex
concept. As with any single-dimensional
network measure, our concept of structural
cohesion filters out a particular aspect of the
network. Previous literature has focused on
alternative elements, such as path distance or
density. However, there are some aspects of
networks that might conceivably be impor-
tant for wider questions about solidarity that
are not captured in our measure. For ex-
ample, all current measures treat networks as
static, although the realization of any given
network is time-dependent (Moody 2002).
Future work might benefit by building time
explicitly into models of social cohesion.
Second, while our network focuses on the
vulnerability of the network to node removal
(also see Borgatti 2002), we do not examine
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the probability that a given node will, in fact,
be removed. For any given context, some
nodes may be more strongly entrenched in
the setting than others, which might provide
a contextual corollary to the ideas developed
here. Finally, a direct link between the rela-
tional structure and the ideational structure
could be identified by layering observed so-
cial relations with ideational similarity mea-
sures, as are derived through shared mem-
bership in groups or identification with par-
ticular ideas (Breiger 1974; Ennis 1992).

Further theory and research are required to
understand how relation type or strength af-
fects the importance of cohesive structures
for substantive outcomes. Of particular in-
terest will be work that, as with Durkheim’s
Division of Labor ([1893] 1984), specifies
the relation between structural cohesion and
ideational components of social solidarity
(Paxton and Moody forthcoming). The con-
nection will require a sustained treatment of
the ideational components of solidarity, as
might build from treatments of individual at-
tachment to a group (Bollen and Hoyle
1990; Lawler 1992), or questions about
identity (Hogg 1992). Our hope is that by
providing a clear and concise definition and
operationalization of structural cohesion,
and a methodological tool for analysis, re-
searchers in many fields will be better able
to conduct their work.

APPENDIX A
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James Moody is Assistant Professor of Sociol-
ogy at The Ohio State University. His work fo-
cuses on the formal properties of informal social
relations, with particular interest in network dy-
namics. Recent empirical work has examined the
social network basis of racial integration
(American Journal of Sociology, vol. 107, pp.
679-716) and dynamic constraints on network
diffusion (Social Forces, vol. 81, pp. 25-56).
Current projects include a dynamic extension of
balance models, an NSF-funded project on email
relations, and collaboration on an NICHD-
funded study of HIV/STI risk networks.

Douglas R. White is Professor in the Institute for
Mathematical Behavioral Sciences and the An-
thropology Department at the University of Cali-
fornia—Irvine, where he also serves as Social
Networks Graduate Program Director. He is an
oft-visiting professor at the Ecole des Hautes
Etudes in Paris, France, and member of several
working groups at the Santa Fe Institute. He has
published roughly 100 peer-reviewed articles,
co-edited Research Methods in Social Network
Analysis (George Mason Press, 1989) and Kin-
ship, Networks and Exchange (Cambridge Uni-
versity Press, 1998), and was recipient of the dis-
tinguished von Humboldt Social Scientist Award
in Germany. His recent research projects utilize
large-scale longitudinal network studies of com-
munities and organizations to test newly opera-
tional network theories of the consequences and
causes of social cohesion (for details see http://
eclectic.ss.uci.edu/~drwhite/nsfiw.htm).

Cohesive Blocking Procedure for Identifying Connectivity Sets

Combining algorithms from computer science (Ball
and Provan 1983; Even and Tarjan 1975; Kanevsky
1990, 1993), we can identify cutsets in a network as
follows:

(1) Identify the connectivity, &, of the input graph.
(2) Identify all k-cutsets at the current level of con-
nectivity.

(3) Generate new graph components based on the
removal of these cutsets (nodes in the cutset be-
long to both sides of the induced cut).

(4) If the graph is neither complete nor trivial, re-
turn to 1; else end.

This procedure is repeated until all nested con-
nectivity sets have been enumerated.* Walking
through the example in Figure 2, we would first

*SAS IML programs for identifying the full connec-
tivity sets of a network are available (Moody 1999).

identify the component (Step 1), and identify the cut-
node {7} (Step 2).” Separating the two subgraphs at
node 7 (Step 3) induces two new components: {7—
16} and {1-7,17-23} that are neither complete nor
trivial. Within each induced subgraph we repeat the
process, starting by identifying the subgraph con-
nectivity. Within the {7-16} bicomponent, we iden-
tify {8, 10}, {10, 16}, and {14, 16} as the 2-cuts for
this subgraph, each of which leads to a single mini-
mum degree cut—we call these types of cuts single-
ton cuts (e.g., of 9, 13, or 15. The graph remaining
after the singleton cuts have been removed is {7, 8,
11, 14, 10, 12, and 16}, which is 1-connected, with
{7, 8, 11, and 14 the largest included tricomponent).
Because {7, 8, 11, and 14} form a completely con-
nected clique, we stop here and return to the other
graph induced by removing node 7, ({1-7,17-23}).

® An efficient algorithm for doing so can be found in
Gibbons (1985).
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Again, this graph is a bicomponent. Cutsets {5, 7}
and {21, 19}, {21,7}, and {5, 19} induce two graphs
of higher cohesion: {1-7} and {17-23} that are of
maximal connectivity, as further cuts will induce
only singleton partitions.

One can represent the hierarchical nesting of con-
nectivity groups as a directed tree, with the total
graph as the root, and each subgraph that derives
from it a new node. The cohesive blocking of a net-
work consists of identifying all cohesive substruc-
tures within the network and relating them to each
other in terms of the nested branching of the sub-
groups. The blocking for the example above is giv-
en in Figure 3 (with singleton cuts not represented).

Testing for k-connectivity (Step 1) can be accom-
plished with a network maximum flow algorithm
developed by Even and Tarjan (1975).© An algo-
rithm for identifying all k-cutsets of the graph (Step
2) was developed by Ball and Provan (1983), and
was extended by Kanevsky (1990, 1993) to find all
minimum-size separating vertex sets.4 One must ap-

¢ This is an extension of Dinic’s algorithm and runs
in O(V'2 E?) time.
4 Which runs in O(2%V?) time.
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ply these two procedures for every induced sub-
graph, and thus the total running time of the algo-
rithm can be substantial. Two steps can be taken to
reduce the computation time. First, there are linear-
time algorithms for identifying k-connected compo-
nents for k < 3, and one can start searching with
these algorithms, limiting the number of levels at
which one has to run the full connectivity algo-
rithms (Fussell, Ramachandran, and Thurimella
1993; Hopcroft and Tarjan 1973). Second, in many
empirical networks the most common cutset occurs
for singleton cuts. Because the procedure is nested,
one can search for nodes with degree less than or
equal to the connectivity of the parent graph (the
graph from which the current graph was derived),
remove them from the network, and thus apply the
network flow search only after the singleton cuts
have been removed.®

¢ Additionally, there are approximation approaches
(Auletta et al. 1999; Khuller and Raghavachari 1995)
that could be used to identify graph connectivity
within a certain amount of error, which would be
faster.
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