
Journal of Machine Learning Research 26 (2025) 1-56 Submitted 8/23; Revised 2/25; Published 5/25

Near-Optimal Nonconvex-Strongly-Convex Bilevel
Optimization with Fully First-Order Oracles

Lesi Chen* chenlc23@mails.tsinghua.edu.cn
IIIS, Tsinghua University
Shanghai Qi Zhi Institute
Beijing, China

Yaohua Ma* ma-yh21@mails.tsinghua.edu.cn
IIIS, Tsinghua University
Beijing, China

Jingzhao Zhang† jingzhaoz@mail.tsinghua.edu.cn

IIIS, Tsinghua University

Shanghai AI Lab

Shanghai Qi Zhi Institute

Beijing, China

Editor: Dan Alistarh

Abstract

In this work, we consider bilevel optimization when the lower-level problem is strongly
convex. Recent works show that with a Hessian-vector product (HVP) oracle, one can
provably find an ε-stationary point within O(ε−2) oracle calls. However, the HVP oracle
may be inaccessible or expensive in practice. Kwon et al. (ICML 2023) addressed this issue
by proposing a first-order method that can achieve the same goal at a slower rate of Õ(ε−3).
In this paper, we incorporate a two-time-scale update to improve their method to achieve
the near-optimal Õ(ε−2) first-order oracle complexity. Our analysis is highly extensible. In
the stochastic setting, our algorithm can achieve the stochastic first-order oracle complexity
of Õ(ε−4) and Õ(ε−6) when the stochastic noises are only in the upper-level objective and
in both level objectives, respectively. When the objectives have higher-order smoothness
conditions, our deterministic method can escape saddle points by injecting noise, and can
be accelerated to achieve a faster rate of Õ(ε−1.75) using Nesterov’s momentum.

Keywords: bilevel optimization, stationary points, first-order methods

1. Introduction

In this paper, we consider the following bilevel optimization problem:

min
x∈Rdx

ϕ(x) := f(x, y∗(x)), where y∗(x) = arg min
y∈Rdy

g(x, y). (1)

We call f the upper-level problem, g the lower-level problem, and ϕ the hyper-objective.
This formulation covers many applications, including but not limited to hyperparameter

*. Equal contributions.
†. The corresponding author.

c©2025 Lesi Chen, Yaohua Ma and Jingzhao Zhang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/23-1104.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/23-1104.html

Chen, Ma and Zhang

tuning (Franceschi et al., 2018; Pedregosa, 2016; Bae and Grosse, 2020; Mackay et al.,
2018), neural architecture search (Liu et al., 2019; Wang et al., 2022b; Zoph and Le, 2016;
Zhang et al., 2021), meta-learning (Finn et al., 2017; Fallah et al., 2020; Andrychowicz
et al., 2016; Mishchenko et al., 2023; Rajeswaran et al., 2019; Chandra et al., 2022; Ji et al.,
2022; Zhou et al., 2019), adversarial training (Zhang et al., 2022; Brückner and Scheffer,
2011; Wang et al., 2021; Bishop et al., 2020; Wang et al., 2022a; Robey et al., 2023) and
data hyper-cleaning (Gao et al., 2022; Zhou et al., 2022; Ren et al., 2018; Yong et al., 2022;
Shu et al., 2019; Li et al., 2022).

This work focuses on the complexity of solving Problem 1. Since the hyper-objective
ϕ(x) is usually a nonconvex function, a common goal for non-asymptotic analysis is to
find an approximate stationary point (Carmon et al., 2020, 2021). When g(x, ·) is convex
but not strongly convex, this goal is intractable as there exists a hard instance such that
any first-order algorithm would always get stuck and have no progress in x (Chen et al.,
2024a, Theorem 3.2). Therefore, it is common to impose the lower-level strong convexity
assumption in the literature (Dagréou et al., 2022; Ji et al., 2021; Chen et al., 2021; Khanduri
et al., 2021; Hong et al., 2023): In this case, the hyper-gradient ∇ϕ(x) can be expressed by:

∇ϕ(x) = ∇xf(x, y∗(x)) +∇y∗(x)∇yf(x, y∗(x))

= ∇xf(x, y∗(x))−∇2
xyg(x, y∗(x))[∇2

yyg(x, y∗(x))]−1∇yf(x, y∗(x)).
(2)

This equation enables one to implement Hessian-vector-product(HVP)-based methods (Ji
et al., 2021; Ghadimi and Wang, 2018) for nonconvex-strongly-convex bilevel optimization.
These methods query HVP oracles to estimate ∇ϕ(x) via Equation 2, and then perform the
so-called hyper-gradient descent on ϕ(x). By using known convergence results of gradient
descent for smooth nonconvex objectives, these methods can find an ε-first-order stationary
point of ϕ(x) with Õ(ε−2) HVP oracle calls. However, in many applications (Sow et al.,
2022; Song et al., 2019; Finn et al., 2017; Nichol et al., 2018), calling the HVP oracle may
be very costly and become the computational bottleneck in bilevel optimization.

Very recently, Kwon et al. (2023) proposed a novel gradient-based algorithm that can
find an ε-first-order stationary point of ϕ(x) without resorting to second-order information.
The key idea is to exploit the following value-function reformulation (Outrata, 1990; Ye and
Zhu, 1995, 2010; Dempe, 2002; Lin et al., 2014) for Equation 1:

min
x∈Rdx ,y∈Rdy

f(x, y), subject to g(x, y)− g∗(x) ≤ 0. (3)

Here g∗(x) = g(x, y∗(x)) is usually called the value-function. The Lagrangian with a mul-
tiplier λ > 0 for this inequality-constrained problem takes the form of:

Lλ(x, y) := f(x, y) + λ(g(x, y)− g∗(x)). (4)

Kwon et al. (2023) further defines the following auxiliary function:

L∗λ(x) := Lλ(x, y∗λ(x)), where y∗λ(x) = arg min
y∈Rdy

Lλ(x, y), (5)

and showed that L∗λ(x) is a good proxy of ϕ(x) with

‖∇L∗λ(x)−∇ϕ(x)‖ = O
(
κ3/λ

)
.

2

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Table 1: We present the oracle complexities of different deterministic methods for finding
an ε-first-order stationary point of the hyper-objective under Assumption 3.1.

Oracle Method Oracle Calls

BA (Ghadimi and Wang, 2018) O(ε−2.5)

HVP AID (Ji et al., 2021) O(ε−2)

ITD (Ji et al., 2021) Õ(ε−2)

PZOBO (Sow et al., 2022) Õ(d2
xε
−4)

BOME (Liu et al., 2022) (a) Õ(ε−6)

Gradient PBGD (Shen and Chen, 2023) (a) Õ(ε−3)

F2SA (Kwon et al., 2023) (b) Õ(ε−3)

F2BA (Algorithm 1) Õ(ε−2)

(a) Shen and Chen (2023), Liu et al. (2022) use a weaker notation of stationary, they proved the convergence
to an ε-stationary point of Lλ(x, y). We present the complexity of Shen and Chen (2023), Liu et al. (2022) for
λ � ε−1, which also implies a O(κε)-stationary point of ϕ(x) as we prove in Appendix H.1.

(b) Kwon et al. (2023) additionally assume ∇2f is Lipschitz and both ‖∇xf(x, y)‖, ‖∇xg(x, y)‖ are upper

bounded. But it is unnecessary if we use a fixed penalty λ as discussed in Appendix H.2.

It indicates that when we set λ � ε−1, an ε-first-order stationary point of L∗λ(x) is also an
O(ε)-first-order stationary point of ϕ(x). Therefore, we can reduce the problem of finding
an ε-first-order stationary point of ϕ(x) to finding that of L∗λ(x). The advantage of this
reduction is that ∇L∗λ(x) can be evaluated with only first-order information of f and g:

∇L∗λ(x) = ∇xL∗λ(x, y∗λ(x)) +∇y∗λ(x)∇yL∗λ(x, y∗λ(x))︸ ︷︷ ︸
=0

= ∇xf(x, y∗λ(x)) + λ(∇xg(x, y∗λ(x))−∇xg(x, y∗(x))).

(6)

Since Lλ(x, y) in Equation 4 is O(λ)-gradient Lipschitz, the single-time-scale (ηx = ηy)
approach for penalty methods (Kwon et al., 2023; Shen and Chen, 2023) requires a com-
plexity of Õ(λε−2) = Õ(ε−3) to find an ε-first-order stationary point, which is slower than
the Õ(ε−2) complexity of HVP-based methods. Kwon et al. (2023) then conjectured that a
fundamental gap may exist between gradient-based and HVP-based methods.

However, this paper refutes this conjecture by showing that gradient-based methods
can also achieve the near-optimal Õ(ε−2) rate as HVP-based methods. We prove that for a
sufficiently large λ, the proxy L∗λ(x) satisfies:

‖∇2L∗λ(x)‖ � ‖∇2ϕ(x)‖ � κ3,

where κ is the condition number that will be formally defined later. It indicates that al-
though λ is large, the gradient Lipschitz coefficient of L∗λ(x) would remain constant and
not depend on λ. Therefore, although the largest possible step size in y is still bounded

3

Chen, Ma and Zhang

Table 2: We present the oracle complexities of different stochastic methods for finding an
ε-first-order stationary point of the hyper-objective under Assumption 3.1, 4.1.

Oracle Method
Partially

Stochastic
Fully

Stochastic

BSA (Ghadimi and Wang, 2018) O(ε−6) O(ε−6)

HVP* TTSA (Hong et al., 2023) O(ε−5) O(ε−5)

StocBiO (Ji et al., 2021) Õ(ε−4) O(ε−4)

PZOBO-S (Sow et al., 2022) Õ(d2
xε
−8) Õ(d2

xε
−8)

Gradient F2SA (Kwon et al., 2023) Õ(ε−5) Õ(ε−7)

F2BSA (Algorithm 2) Õ(ε−4) Õ(ε−6)

We remark in “*” that HVP-based methods additionally assume the stochastic estimators of second-order

derivatives ∇2
xyg/∇2

yyg are unbiased and have bounded variance. Therefore, it is reasonable that gradient-based

methods has worse complexities than HVP-based method in the fully stochastic case. Such a gap also exists in

nonconvex single-level optimization (Arjevani et al., 2020).

by O(1/λ), i.e. ηy = O(ε), we can use a larger step size in x because the landscape in x
is much smoother, i.e. ηx = O(1). It motivates us to propose the Fully First-order Bilevel
Approximation (F2BA) which uses the two-time-scale step size (ηx 6= ηy) in the method by
Kwon et al. (2023). Our proposed method can find an ε-stationary point with Õ(ε−2) com-
plexity. As nonconvex-strongly-concave bilevel optimization problems subsume standard
nonconvex optimization problems, the Õ(ε−2) upper bound is optimal up to logarithmic
factors according to the lower bound provided by Carmon et al. (2020). We compare our
complexity result with prior works in Table 1. In the stochastic setting, we prove that our
algorithm enjoys a complexity of Õ(ε−4) and Õ(ε−6) for partially and fully stochastic cases,
respectively, which also improves the best-known results Kwon et al. (2023). We compare
our result in the stochastic case with prior works in Table 2.

We also study the problem under additional smoothness conditions. If we addition-
ally assume the Hessian Lipschitz continuity of f and the third-order derivative Lipschitz
continuity of g, we prove that

‖∇2L∗λ(x)−∇2ϕ(x)‖ = O(κ6/λ) and ‖∇3L∗λ(x)‖ � ‖∇3ϕ(x)‖ � κ5.

Based on this observation, we propose the Perturbed F2BA (or PF2BA for short, see Algo-
rithm 3), which can provably find an ε-second-order stationary point of ϕ(x) within Õ(ε−2)
gradient oracle calls. Our result shows that gradient-based methods can also escape saddle
points in bilevel optimization like HVP-based methods (Huang et al., 2025). Additionally,
we further exploit the Hessian Lipschitz continuity of L∗λ(x) to achieve a better complexity
of Õ(ε−1.75) by incorporating Nesterov’s acceleration. We name this new method Acceler-
ated F2BA (or AccF2BA for short, see Algorithm 4). We compare the results for finding
second-order stationary points in Table 3.

4

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Table 3: We present the oracle complexities of different deterministic methods for finding
an ε-second-order stationary point of the hyper-objective under Asmp. 3.1, 3.2.

Oracle Method Oracle Calls

PAID (Huang et al., 2025) Õ(ε−2)
HVP

PRAHGD (Yang et al., 2023) Õ(ε−1.75)

PF2BA (Algorithm 3) Õ(ε−2)
Gradient

AccF2BA (Algorithm 4) Õ(ε−1.75)

Notations. We use notations O(·), Õ(·), Ω(·), � as follows: given two functions p :
R+ → R+ and q : R+ → R+, p(x) = O(q(x)) means lim supx→+∞ p(x)/q(x) < +∞; p(x) =
Õ(p(x)) means there exists some positive integer k ≥ 0 such that p(x) = O(q(x) logk(q(x))),
p(x) = Ω(q(x)) means lim supx→+∞ p(x)/q(x) > 0, and p(x) � q(x) means we both have
p(x) = O(q(x)) and p(x) = Ω(q(x)). We use Id ∈ Rd×d to denote a d=dimensional identity
matrix. For two symmetric matrices A and B, we use A � B to indicate that A − B is
positive semidefinite. We use B(r) to denote the Euclidean ball centered at the origin and
radius r. For a function h : Rd → R, we use ∇h ∈ Rd,∇2h ∈ Rd×d,∇3h ∈ Rd×d×d to denote
its gradient, Hessian, and third-order derivative, and use h∗ to denote the global minimum
of h(·). We denote ‖ · ‖ to be the operator norm of a tensor and more details about the
notations of tensors can be found in Appendix A.

2. Related Works

We review the related works on HVP-based and gradient-based methods.

HVP-Based Methods for Bilevel Optimization. Most existing HVP-based meth-
ods for nonconvex-strongly-convex bilevel optimization can be categorized into the approx-
imate implicit differentiation (AID) methods and the iterative differentiation (ITD) meth-
ods. The AID approach (Liao et al., 2018; Ji et al., 2021; Ghadimi and Wang, 2018;
Lorraine et al., 2020) constructs hyper-gradients explicitly according to Equation 2 that
∇ϕ(x) = ∇xf(x, y∗(x)) − ∇2

xyg(x, y∗(x))v∗, where v∗ is the solution to the linear system
∇2
yyg(x, y∗(x))v∗ = ∇yf(x, y∗(x)). Then one can use iterative algorithms such as fix point

iteration or conjugate gradient method to solve this linear system, avoiding the computa-
tion of the Hessian inverse (Grazzi et al., 2020; Ji et al., 2021; Hong et al., 2023). The ITD
approach (Maclaurin et al., 2015; Shaban et al., 2019; Domke, 2012; Franceschi et al., 2017,
2018) takes advantage of the fact that backpropagation can be efficiently implemented via
modern automatic differentiation frameworks such as PyTorch (Paszke et al., 2019). These
methods approximate hyper-gradients by ∂f(x, yK(x))/∂x, where yK(x) is the output from
K-steps of gradient descent on g(x, ·). Although the ITD approach does not query second-
order information explicitly, the analytical form of ∂f(x, yK(x))/∂x involves second-order
derivatives (Ji et al., 2021), which also requires HVP oracle implicitly. Both AID and ITD

5

Chen, Ma and Zhang

methods require Õ(ε−2) HVP oracle calls to find an ε-first-order stationary point of ϕ(x).
Recently, Huang et al. (2025) proposed the perturbed AID to find an ε-second-order sta-
tionary point with Õ(ε−2) complexity under additional smoothness conditions. Yang et al.
(2023) proposed the Perturbed Restarted Accelerated HyperGradient Descent (PRAHGD)
algorithm with an improved complexity of Õ(ε−1.75). Wang et al. (2024, Section 4.2) also
mentioned that the Õ(ε−1.75) complexity can also be achieved by applying the Inexact
APPA Until Nonconvexity (IAPUN) algorithm to bilevel problems.

Gradient-Based Methods for Bilevel Optimization. The basic idea of gradient-
based methods for bilevel optimization is to approximate the hyper-gradient in Equation 2
using gradient information. Sow et al. (2022) proposed the Partial Zeroth-Order based
Bilevel Optimizer (PZOBO) that applies a zeroth-order-like estimator to approximate the
response Jacobian matrix ∇y∗(x) in Equation 2, and hence the complexity has a polynomial
dependency on the dimension of the problem like the standard results in zeroth-order opti-
mization (Duchi et al., 2015; Ghadimi and Lan, 2013; Kornowski and Shamir, 2023). Liu
et al. (2022) first observed Equation 6 that ∇L∗λ(x) only involves first-order information and
proposed the method named Bilevel Optimization Made Easy (BOME). Shen and Chen
(2023) studied the relationship of global and local solutions of the penalty function and the
original bilevel problem, and proposed the penalty-based bilevel gradient descent (PBGD)
that can converge to the stationary point of Lλ(x, y) in Equation 4 with Õ(λε−2) oracle
calls. But Liu et al. (2022), Shen and Chen (2023) did not provide any convergence result of
ϕ(x). Remarkably, Kwon et al. (2023) established the relationship between L∗λ(x) and ϕ(x),
and proposed the Fully First-order Stochastic Approximation (F2SA) that can provably find
an ε-first-order stationary point of ϕ(x) within Õ(ε−3) oracle complexity. As a by-product
of their analysis, one can also show that BOME (Liu et al., 2022) and PBGD (Shen and
Chen, 2023) converge to an ε-stationary point of ϕ(x) at the rate of Õ(ε−6) and Õ(ε−3),
respectively. However, before our work, we did not know whether gradient-based methods
could have comparable theoretical guarantees to HVP-based methods.

3. Preliminaries

In this section, we introduce the different setups studied in this work. We focus on stating
the assumptions and definitions used later, while delaying a more comprehensive description
to future sections where we state and describe our main results.

First-Order Stationary Points We first discuss the assumptions for finding first-order
stationary points of the hyper-objective ϕ(x), detailed below.

Assumption 3.1 Suppose that

a. g(x, y) is µ-strongly convex in y;

b. g(x, y) is Lg-gradient Lipschitz;

c. g(x, y) is ρg-Hessian Lipschitz;

d. f(x, y) is Cf -Lipschitz in y;

6

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

e. f(x, y) is Lf -gradient Lipschitz;

f. f(x, y) is two-times continuous differentiable;

g. ϕ(x) is lower bounded, i.e. infx∈Rdx ϕ(x) > −∞;

The above assumptions are common and necessary for non-asymptotic analyses. Ac-
cording to Theorem 3.2 in (Chen et al., 2024a), bilevel problems are intractable in general
when g(x, ·) is not strongly convex. For this reason, existing non-asymptotic analyses for
bilevel optimization commonly make the lower-level strong convexity assumption (Assump-
tion 3.1a). In this case, ∇ϕ(x) can be expressed jointly by ∇xf(x, y), ∇yf(x, y), ∇2

xyg(x, y)
and ∇2

yyg(x, y) as Equation 2. This expression indicates that we need the smoothness con-
ditions for f and g (Assumption 3.1b - 3.1e) to guarantee the gradient Lipschitz continuity
of ϕ(x). Besides these, we adopt Assumption 3.1f to ensure that Lλ(x, y) (Equation 5) is
two-times continuous differentiable, and Assumption 3.1g to ensure the bilevel optimization
problem (Equation 1) is well-defined.

Definition 3.1 Under Assumption 3.1, we define the largest smoothness constant ` :=
max{Cf , Lf , Lg, ρg} and the condition number κ := `/µ.

We can derive from the above assumptions that ∇ϕ(x) is uniquely defined and Lipschitz
continuous, formally stated as follows.

Proposition 3.1 (Ghadimi and Wang (2018, Lemma 2.2)) Under Assumption 3.1,
the hyper-gradient ∇ϕ(x) is uniquely defined by Equation 2, and the hyper-objective ϕ(x) is
Lϕ-gradient Lipschitz, where Lϕ = O(`κ3).

As the above proposition ensures that the hyper-objective ϕ(x) is differentiable, we can
define the ε-first-order stationary points as follows.

Definition 3.2 Given a differentiable function ϕ(x) : Rd → R, we call x̂ an ε-first-order
stationary point of ϕ(x) if ‖∇ϕ(x̂)‖ ≤ ε.

Second-Order Stationary Points Algorithms that pursue first-order stationary points
may get stuck in saddle points and have poor performances (Dauphin et al., 2014). For
single-level optimization problems, there have been many researchers studying how to escape
saddle points (Jin et al., 2017; Ge et al., 2015; Fang et al., 2019; Tripuraneni et al., 2018;
Agarwal et al., 2017; Lee et al., 2016; Allen-Zhu and Li, 2018; Carmon et al., 2017; Zhou
et al., 2020; Allen-Zhu, 2018b; Xu et al., 2018; Zhang and Li, 2021). A common assumption
in these works is to suppose that the objective is Hessian Lipschitz. When generalizing to
bilevel optimization, we also expect ϕ(x) to be Hessian Lipschitz, which can be proved if
we further assume the following higher-order smoothness condition of f and g.

Assumption 3.2 Suppose that

a. f(x, y) is three-times continuous differentiable;

b. f(x, y) is ρf -Hessian Lipschitz;

7

Chen, Ma and Zhang

Algorithm 1 F2BA (x0, y0)
1: z0 = y0

2: for t = 0, 1, · · · , T − 1

3: y0
t = yt, z

0
t = zt

4: for k = 0, 1, · · · ,K − 1

5: zk+1
t = zkt − ηzλ∇yg(xt, z

k
t)

6: yk+1
t = ykt − ηy

(
∇yf(xt, y

k
t) + λ∇yg(xt, y

k
t)
)

7: end for

8: ∇̂L∗λ(xt) = ∇xf(xt, y
K
t) + λ(∇xg(xt, y

K
t)−∇xg(xt, z

K
t))

9: xt+1 = xt − ηx∇̂L∗λ(xt)

10: end for

c. g(x, y) is νg-third-order derivative Lipschitz.

Definition 3.3 Under Assumption 3.1 and 3.2, we define the largest smoothness constant
` := max{Cf , Lf , Lg, ρg, ρf , νg} and the condition number κ := `/µ.

Proposition 3.2 (Huang et al. (2025, Lemma 3.4)) Under Assumption 3.1 and 3.2,
the hyper-objective ϕ(x) is two-times continuously differentiable and ρϕ-Hessian Lipschitz,
where ρϕ = O(`κ5).

We can then formally define the approximate second-order stationary point as follows.

Definition 3.4 (Nesterov and Polyak (2006)) Given a two-times continuously differ-
entiable function ϕ(x) : Rd → R with ρ-Lipschitz Hessian, we call x̂ an ε-second-order
stationary point of ϕ(x) if

‖∇ϕ(x̂)‖ ≤ ε, ∇2ϕ(x̂) � −√ρεId.

We will discuss finding second-order stationary points for bilevel problems later in Section 5.

4. Finding First-Order Stationary Points

In bilevel optimization, the hyper-objective ϕ(x) is usually a nonconvex function. Since
finding the global minimum of a nonconvex function in the worst case requires an exponen-
tial number of queries, a common compromise is to find a local minimum (Ge et al., 2016).
First-order stationary points (Definition 3.2) are the points that satisfy the first-order nec-
essary condition of a local minimum, which turns out to be a valid optimality criterion for
nonconvex optimization.

4.1 Near-Optimal Rate in the Deterministic Case

In this section, we propose our method, namely Fully First-order Bilevel Approximation
(F2BA). The detailed procedure of is presented in Algorithm 1. The algorithm introduces

8

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

an auxiliary variable z ∈ Rdy , and performs gradient descent jointly in x, y, z to solve the
following optimization problem:

min
x∈Rdx ,y∈Rdy

{
f(x, y) + λ

(
g(x, y)− min

z∈Rdy
g(x, z)

)}
Eq.5
= min

x∈Rdx
L∗λ(x). (7)

The intuition behind the algorithm is that optimizing L∗λ(x) is almost equivalent to opti-
mizing ϕ(x) when λ is large. Therefore, to analyze the convergence of the algorithm, we
first characterize the relationship between L∗λ(x) and ϕ(x) in the following lemmas.

Lemma 4.1 Suppose Assumption 3.1 holds. Define `, κ according to Definition 3.1, and
L∗λ(x) according to Equation 5. Set λ ≥ 2Lf/µ, then it holds that

a. ‖∇L∗λ(x)−∇ϕ(x)‖ = O(`κ3/λ), ∀x ∈ Rdx (Lemma B.4).

b. |L∗λ(x)− ϕ(x)| = O(`κ2/λ), ∀x ∈ Rdx (Lemma B.3).

c. L∗λ(x) is O(`κ3)-gradient Lipschitz (Lemma B.7).

All the formal versions of these lemmas and the corresponding proofs can be found in
Appendix B. Lemma 4.1a is a restatement of Lemma 3.1 by Kwon et al. (2023), which
demonstrates that when λ � ε−1, an ε-first-order stationary point of L∗λ(x) is also an O(ε)-
first-order stationary of ϕ(x). Lemma 4.1c is a new result proved in this paper. It means
although L∗λ(x) depends on λ, when λ exceeds a certain threshold, the gradient Lipschitz
coefficient of L∗λ(x) only depends on that of ϕ(x) and does not depend on λ. The high-
level intuition is that since we know L∗λ(x) would converge to a fixed objective ∇ϕ(x)
when λ → ∞, it is possible that the Lipschitz constant of L∗λ(x) also converges to a fixed
value. Below, we sketch the proof of Lemma 4.1c. The non-trivial part is the show that
λ(g(x, y∗λ(x)) − g(x, y∗(x)) is O(1)-gradient Lipschitz independent of λ. We prove this by
bounding the operator norm of its second-order derivative, which by calculation is

λ(∇2
xxg(x, y∗λ(x))−∇2

xxg(x, y∗(x)))

+ λ
(
∇y∗λ(x)∇2

yxg(x, y∗λ(x))−∇y∗(x)∇2
yxg(x, y∗(x))

)
,

which should be O(1) since we can show that

‖y∗λ(x)− y∗(x)‖ = O(1/λ), and ‖∇y∗λ(x)−∇y∗(x)‖ = O(1/λ).

Since the convergence rate of gradient descent depends on the gradient Lipschitz coefficient
of the objective, Lemma 4.1c indicates that optimizing L∗λ(x) is as easy as optimizing
ϕ(x). Note that ∇L∗λ(x) only involves first-order information (Equation 6), Lemma 4.1c
then suggests that first-order methods can have the same convergence rate as HVP-based
methods, as stated in the following theorem.

Theorem 4.1 Suppose Assumption 3.1 holds. Define ∆ := ϕ(x0) − infx∈Rdx ϕ(x) and
R := ‖y0 − y∗(x0)‖2. Let ηx � `−1κ−3, λ � max

{
κ/R, `κ2/∆, `κ3/ε

}
and set other

parameters in Algorithm 1 as

ηz = ηy =
1

2λLg
, K = O

(
Lg
µ

log

(
λLg
µ

))
,

9

Chen, Ma and Zhang

Algorithm 2 F2BSA (x0, y0)
1: z0 = y0

2: for t = 0, 1, · · · , T − 1

3: y0
t = yt, z

0
t = zt

4: for k = 0, 1, · · · ,K − 1

5: zk+1
t = zkt − ηzλ∇yg(xt, z

k
t ;Bin)

6: yk+1
t = ykt − ηy

(
∇yf(xt, y

k
t ;Bin) + λ∇yg(xt, y

k
t ;Bin)

)
7: end for

8: Gt = ∇xf(xt, y
K
t ;Bout) + λ(∇xg(xt, y

K
t ;Bout)−∇xg(xt, z

K
t ;Bout))

9: xt+1 = xt − ηxGt
10: end for

then it can find an ε-first-order stationary point of ϕ(x) within O(`κ4ε−2 log(`κ/ε)) first-order
oracle calls, where `, κ are defined in Definition 3.1.

Remark 1 When the upper-level function only depends on x, i.e. we have f(x, y) ≡ h(x)
for some function h(·), the bilevel problem reduces to a single-level problem, for which
Carmon et al. (2020) proved a lower complexity bound of Ω(ε−2). Therefore, we can conclude
that the first-order oracle complexity of F2BA we proved is near-optimal.

We defer the proof of Theorem 4.1 to Appendix D. The complexity of F2BA in Theorem
4.1 achieves the near-optimal rate in the dependency on ε, and matches the state-of-the-
art second-order methods AID and ITD (Ji et al., 2021) in the dependency of κ. Our
result, for the first time, closes the gap between gradient-based and HVP-based methods
for nonconvex-strongly-convex bilevel optimization. In Appendix G, we also discuss the
advantage of gradient-based methods compared to HVP-based methods in the distributed
scenarios. The distributed F2BA is much more easy to implement than HVP-based methods.

4.2 Extension to the Stochastic Case

In this section, we study the case when the algorithms only have access to stochastic
gradient oracles that satisfy the following assumptions.

Assumption 4.1 We access the gradients of objective functions via unbiased estimators
∇f(x, y;φf) and ∇g(x, y;φg) such that

Eφf [∇f(x, y;φf)] = ∇f(x, y), Eφg [∇g(x, y;φg)] = ∇g(x, y).

And the variance of stochastic gradients is bounded:

Eφf
[
‖∇f(x, y;φf)−∇f(x, y)‖2

]
≤ σ2

f , Eφg
[
‖∇g(x, y;φg)−∇g(x, y)‖2

]
≤ σ2

g .

We propose the Fully First-order Stochastic Bilevel Approximation (F2BSA) in Algo-
rithm 2. At each iteration, our algorithm samples a mini-batch to estimate the true gradient:

∇f(x, y;B) =
1

B

B∑
i=1

∇f(x, y;φ
(i)
f), ∇g(x, y;B) =

1

B

B∑
i=1

∇g(x, y;φ(i)
g),

10

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

where both φ
(i)
f and φ

(i)
g are sampled i.i.d. ate each iteration, and B denotes the batch

size. We use Bout and Bin to denote the batch size of outer and inner loop, respectively.
By properly setting the value of Bout and Bin, F2BSA can track the deterministic method
F2BA up to O(ε) error, and therefore also converges to an ε-stationary point of ϕ(x).

Theorem 4.2 Suppose Assumption 3.1 and 4.1 hold. Let `, κ defined as Definition 3.1.
Define ∆ := ϕ(x0) − infx∈Rdx ϕ(x) and R := ‖y0 − y∗(x0)‖2. Let ηx � `−1κ−3, λ �
max

{
κ/R, `κ2/∆, `κ3/ε

}
and set other parameters in Algorithm 2 as

ηz = ηy =
1

2λLg
, Kt = Õ

(
Lg log δt

µ

)
,

Bout �
σ2
f + λ2σ2

g

ε2
, Bin �

L2
f + λ2L2

g

λ2µ2
·Bout.

where δt is defined via the recursion

δt+1 =
1

2
δt +

34L2
g

µ2
‖xt+1 − xt‖2 +

σ2
g

2LgBin
, δ0 = O(R),

then it can output a point such that E‖∇ϕ(x)‖ ≤ ε within T = O(`κ3ε−2) iterations. The
total number of stochastic first-order oracle calls is bounded by{

O(`κ6ε−4 log(`κ/ε)), σf > 0, σg = 0;

O(`3κ12ε−6 log(`κ/ε)), σf > 0, σg > 0.

Our results improve that of Kwon et al. (2023) by a factor of O(ε−1) in both cases.
In the partially stochastic case (σg > 0, σg = 0), the Õ(ε−4) upper bound is near-optimal
due to the lower bound by Arjevani et al. (2023). However, the Õ(ε−6) complexity in the
fully stochastic case (σf > 0, σg > 0) is worse than the Õ(ε−4) upper bound by the current
best stochastic HVP-based methods (Ji et al., 2021). It is reasonable as the stochastic
HVP-based methods rely on stronger assumptions that ∇2g(x, y;φ) is unbiased and has
bounded variance. Similar separation between HVP-based and gradient-based methods in
the stochastic setting also exists in single-level optimization (Arjevani et al., 2020).

Remark 2 One drawback of Theorem 4.2 is that it requires a large batch size B � (σ2
f +

λ2σ2
g)ε
−2 to track the deterministic algorithm. The large batch size ensures that the hyper-

gradient estimator Gt is nearly unbiased, i.e., ‖EGt −∇L∗λ(xt)‖ = O(ε).

In contrast, the algorithms in (Kwon et al., 2023) use single-batch SGD update in both
inner and outer loops. To support such small-batch updates, we can apply the existing
technique in the literature (Asi et al., 2021; Hu et al., 2021), known as the multi-level
Monte Carlo (MLMC) technique (Blanchet and Glynn, 2015; Giles, 2008). This method
converts the original gradient estimator to a nearly unbiased estimator at negligible extra
costs. We specify Algorithm 5 in Appendix E, and provide the analysis in Theorem E.3. The
convergence rate matches the large-batch algorithm. We provide more details in Appendix E.

11

Chen, Ma and Zhang

Algorithm 3 Perturbed F2BA (x0, y0)
1: z0 = y0

2: for t = 0, 1, · · · , T − 1

3: y0
t = yt, z

0
t = zt

4: for k = 0, 1, · · · ,Kt − 1

5: zk+1
t = zkt − ηzλ∇yg(xt, z

k
t)

6: yk+1
t = ykt − ηy

(
∇yf(xt, y

k
t) + λ∇yg(xt, y

k
t)
)

7: end for

8: ∇̂L∗λ(xt) = ∇xf(xt, y
Kt
t) + λ(∇xg(xt, y

Kt
t)−∇xg(xt, z

Kt
t))

9: if ‖∇̂L∗λ(xt)‖ ≤ 4
5ε and no perturbation added in the last T steps

10: xt = xt − ηxξt, where ξt ∼ B(r)

11: end if

12: xt+1 = xt − ηx∇̂L∗λ(xt)

13: end for

5. Finding Second-Order Stationary Points

We have shown in the previous section that the F2BA is near-optimal for finding first-
order stationary points. However, a first-order stationary point may be a saddle point or a
local maximizer, which needs to be escaped from for an effective optimizer. For this reason,
many works aim to find a second-order stationary point (Definition 3.4).

5.1 Perturbed F2BA

In this section, we propose a simple variant of F2BA (Algorithm 3) that can achieve this
higher goal. The only difference to Algorithm 1 is the additional Line 9-10 in Algorithm 3,
which is motivated by the perturbed strategy for escaping saddle points (Jin et al., 2017).

To prove the desired conclusion, we need to extend the analysis in Lemma 4.1 to higher-
order derivatives. Below, we show that once λ is sufficiently large, L∗λ(x) and ϕ(x) have not
only very close gradients (Lemma 4.1a) but also very close Hessian matrices.

Lemma 5.1 Suppose both Assumption 3.1 and 3.2 hold. Define `, κ according to Definition
3.3, and L∗λ(x) according to Equation 5. Set λ ≥ 2Lf/µ, then it holds that

a. ‖∇2L∗λ(x)−∇2ϕ(x)‖ = O(`κ6/λ), ∀x ∈ Rdx. (Lemma C.3)

b. L∗λ(x) is O(`κ5)-Hessian Lipschitz. (Lemma C.2)

These lemmas are the higher-order version of Lemma 4.1, but the proof is much more
difficult because ∇2ϕ(x) is very complex and contains third-order derivatives. All the
complete proof can be found in Appendix C. Based on these lemmas, we can prove the
convergence of perturbed F2BA in the following theorem.

12

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Theorem 5.1 Suppose both Assumption 3.1 and 3.2 hold. Define ∆ := ϕ(x0)−infx∈Rdx ϕ(x)

and R := ‖y0 − y∗(x0)‖2. Let ηx � `−1κ−3, λ � max
{
κ/R, `κ2/∆, `κ3/ε, κ3.5

√
`/ε
}

and

set other parameters in Algorithm 1 as

ηz =
1

Lg
, ηy =

1

2λLg
, r = O(ε), Kt = Õ

(
Lg log δt

µ

)
,

where δt is defined via the recursion

δt+1 =
1

2
δt +

34L2
g

µ2
‖xt+1 − xt‖2, δ0 = O(R), (8)

then it can find an ε-second-order stationary point of ϕ(x) with probability at least 1 − δ
within Õ

(
`κ4ε−2

)
first-order oracle calls, where `, κ are defined in Definition 3.3 and the

notation Õ(·) hides logarithmic factors of dx, κ, `, and δ, ε.

We defer the proof to Appendix F. The above complexity for finding ε-second-order
stationary points matches that for finding ε-first-order stationary points (Theorem 4.1), up
to logarithmic factors. Therefore, we conclude that F2BA can escape saddle points almost
for free by simply adding some small perturbation in each step.

We remark that it is also possible to design the perturbed version of F2BSA to escape
saddle points using only stochastic gradient oracles via existing techniques (Xu et al., 2018;
Allen-Zhu and Li, 2018). We leave them as potential future extensions.

5.2 Accelerated F2BA

Compared to F2BA, the perturbed version relies on the additional Assumption 3.2 to
ensure the Hessian Lipschitz continuity of ϕ(x). This addition assumption not only allows
escaping saddle points, but also makes further acceleration being possible.

In this section, we combine our F2BA with the recently proposed acceleration technique
for nonconvex optimization (Li and Lin, 2023) to achieve a faster rate of Õ(ε−1.75) for
Hessian Lipschitz objectives. This accelerated F2BA algorithm is presented in Algorithm
4. The difference to Algorithm 1 is the uses of Nesterov’s momentum (Nesterov, 1983) in x
(Line 3), and the restart strategy by (Li and Lin, 2023) in Line 13-15.

Theorem 5.2 Suppose both Assumption 3.1 and 3.2 hold. Define ∆ := ϕ(x0)−infx∈Rdx ϕ(x)

and R := ‖y0 − y∗(x0)‖2. Let ηx � `−1κ−3, λ � max
{
κ/R, `κ2/∆, `κ3/ε, κ3.5

√
`/ε
}

and

set other parameters in Algorithm 1 as

ηz = ηy =
1

2λLg
, Kt = Õ

(
Lg log δt

µ

)
,

T � χ

θ
, B � 1

χ2

√
ε

`κ3
, θ �

(
`ε

κ

)1/4

, r = O(ε),

where χ = O(log(dx/δε)), where δt is defined via the recursion

δt+1 =
1

2
δt +

34L2
g

µ2
‖xt+1/2 − x−t+1/2‖

2, δ0 = O(R), (9)

13

Chen, Ma and Zhang

Algorithm 4 Accelerated F2BA(x0, y0)
1: z0 = y0, x−1 = x0

2: while t < T

3: xt+1/2 = xt + (1− θ)(xt − xt−1)

4: y0
t = yt, z

0
t = zt

5: for k = 0, 1, · · · ,Kt − 1

6: zk+1
t = zkt − ηzλ∇yg(xt+1/2, z

k
t)

7: yk+1
t = ykt − ηy

(
∇yf(xt+1/2, y

k
t) + λ∇yg(xt+1/2, y

k
t)
)

8: end for

9: ∇̂L∗λ(xt+1/2) = ∇xf(xt+1/2, y
Kt
t) + λ(∇xg(xt+1/2, y

Kt
s)−∇xg(xt+1/2, z

Kt
t))

10: x−t+1/2 = xt+1/2

11: xt+1 = xt+1/2 − ηx∇̂L∗λ(xt+1/2)

12: t = t+ 1

13: if t
∑t−1

j=0 ‖xt+1 − xt‖2 ≥ B2

14: t = 0, x−1 = x0 = xt + ξt1‖∇̂L∗λ(xt+1/2)‖≤ B
2ηx

, where ξt ∼ B(r)

15: end if

16: end while

17: T0 = arg minbT
2
c≤t≤T−1 ‖xt+1 − xt‖

18: return xout = 1
T0+1

∑T0
t=0 xt+1/2

then it can find an ε-second-order stationary point of ϕ(x) with probability at least 1 − δ
within Õ

(
κ`1/2ρ1/4ε−1.75

)
= Õ

(
κ3.75ε−1.75

)
first-order oracle calls, where `, κ are defined

in Definition 3.3 and the notation Õ(·) hides logarithmic factors of dx, κ, `, and δ, ε.

The Õ(ε−1.75) complexity matches the state-of-the-art methods for Hessian Lipschitz
objectives (Jin et al., 2018; Carmon et al., 2017; Li and Lin, 2023). However, it is still
an open problem whether this rate is optimal because there still exists a gap between this
upper bound and the current best Ω(ε−1.714) lower bound by Carmon et al. (2021).

6. Experiments

We conduct experiments to showcase the superiority of our proposed methods. We imple-
ment the algorithms using PyTorch (Paszke et al., 2019). In all the experiments, we tune
tune the step size in the grid {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103} and present
the best result of each algorithm.

14

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

0 5000 10000
#Iterations (x)

10 2

10 1

100
(x

t)

0 5000 10000
#Iterations (x)

10 3

10 2

10 1

100

y
(x

t,y
t)

/

0 5000 10000
#Iterations (x)

10 3

10 2

10 1

100

zg
(x

t,z
t)

(a) Convergence of x (b) Convergence of y (c) Convergence of z

Figure 1: Numerical verification of F2BA on Problem (10).

6.1 Tuning a Single Regularizer on Linear Regression

Let Dtr = (Atr, btr) and Dval = (Aval, bval) are the training and validation sets respectively,
We first validate the convergence rate suggested by the theory on a simple problem:

min
x∈R

1

2
‖Avaly∗(x)− bval‖2,

where y∗(x) = arg min
y∈Rp

1

2
‖Atry − btr‖2 +

σ(x)

2
‖y‖2,

(10)

where σ(x) = exp(x). We use the “abalone” dataset1, which contains 4,177 samples and
each sample has 8 features (p = 8). We split the dataset into the training set and the
validation set in a 7:3 ratio. For this problem, we can explicitly solve y∗(x) and calculate
∇ϕ(x), ∇yLλ(x, y), ∇yg(x, z) to measure the convergence the algorithm. We run F2BA
(Algorithm 1) with K = 10, λ = 103, and the results are shown in Figure 6. It can be
seen from the figure that the upper-level variable x converges to a stationary point of the
hyper-objective ϕ, and the lower-level variables y and z converges to the minimizers y∗λ(x)
and y∗(x), respectively.

6.2 Tuning 100,000 Regularizers on Logistic Regression

We then compare our deterministic methods on the “learnable regularization” problem of
logistic regression. The aim is to find the optimal regularizer for each feature separately.
The corresponding bilevel problem formulation is:

min
x∈Rp

 1

|Dval|
∑

(ai,bi)∈Dval

`(〈ai, y∗(x)〉 , bi)

 ,

where y∗(x) = arg min
y∈Rp

 1

|Dtr|
∑

(ai,bi)∈Dtr

` (〈ai, y〉 , bi) + y>Σ(x) y

 ,

(11)

where `(· , ·) is the cross-entropy loss and Σ(x) := diag(exp(x)) determines the regularizers
on each feature. We conduct the experiments on the “20 newsgroup” dataset which is

1. Dataset available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

15

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Chen, Ma and Zhang

0 250 500 750 1000
#Iterations (x)

0.70

0.75

0.80

0.85
Te

st
 L

os
s

0 250 500 750 1000
#Iterations (x)

0.76

0.78

0.80

Te
st

 A
cc

ur
ac

y

F2BA
AccF2BA

F2SA
PBGD

AID
w/o Reg

Figure 2: Comparison of deterministic algorithms on Problem (11). Our proposed algo-
rithms F2BA as well as its acceleration AccF2BA outperform baselines.

commonly used by previous works (Grazzi et al., 2020; Ji et al., 2021). This dataset is a
collection of 18,000 newsgroup documents from 20 different newsgroups. Each document is
represented by a p-dimensional vector (p = 101, 631), where each dimension represents the
TF-IDF (Term Frequency-Inverse Document Frequency) of a word.

We compare F2BA (Algorithm 1) as well as its acceleration AccF2BA (Algorithm 4)
with a HVP-based method AID (Grazzi et al., 2020; Ji et al., 2021) and recently proposed
gradient-based methods including F2SA (Kwon et al., 2023), PBGD (Shen and Chen, 2023).
We set the number of inner loops as 10 for all the algorithms, and additionally tune λ from
{101, 102, 103, 104} for penalty based methods F2BA, AccF2BA, F2SA, and PBGD. For
AccF2BA, we set θ = 0.1 as commonly used in momentum-based gradient methods. Instead
of using a fixed B in the restart mechanism of AccF2BA that may lead to very frequent
restarts, we follow the practical implementation suggestion by Li and Lin (2023) to use
B = max{B,B0} with B0 decaying by a constant factor γ after each restart. According to
Theorem 2 (Li and Lin, 2023), this modified algorithm would have the same convergence
rate as the original algorithm except for an additional O(log(B0/ε)) factor. We take γ = 0.99
in our experiments.

We present the results in Figure 2, where the dashed line (labeled with “w/o Reg”)
represents the result without tuning any regularizers. It can be seen from Figure 2 that
our proposed F2BA outperforms all existing baselines, and can ever achieve a better perfor-
mance after acceleration (AccF2BA). It is also interesting that the HVP-based method AID
performs badly in this experiment. We think the reason is that ∇2

yyg(x, y) in our problem
can be very close to singular, which makes it very difficult to calculate its inverse numeri-
cally. In contrast, penalty-based methods do not suffer from the numerical instability.

6.3 Data Hyper-Cleaning for GPT-2

To demonstrate the scalability of our proposed method, we consider a large-scale data
hyper-cleaning problem similar to the setting in (Pan et al., 2024). Let y ∈ Rp be the
parameters of a neural network, which in our experiment is a GPT-2 model with 124M

16

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

0 200 400 600
#Iterations (x)

0.0

0.2

0.4
W

ei
gh

ts
 o

n
Ga

rb
ag

e

PBGD
F2SA
F2BSA

0 200 400 600
#Iterations (x)

0.0

0.2

0.4

W
ei

gh
ts

 o
n

Ga
rb

ag
e

PBGD
F2SA
F2BSA

0 200 400 600
#Iterations (x)

0.0

0.2

0.4

W
ei

gh
ts

 o
n

Ga
rb

ag
e

PBGD
F2SA
F2BSA

(a) p = 0.5 (b) p = 0.9 (c) p = 0.99

Figure 3: Comparison of stochastic algorithms on Problem (12) under different corruption
ratios p. Due to the use of two-time-scale step size, our proposed F2BSA signifi-
cantly outperforms single-time-scale baselines PBGD and F2SA.

parameters (Radford et al., 2019). The model is trained on a dataset from multiple sources.
The loss on each individual data source is denoted as `itr(·), where i = 1, · · · ,m and m is
the total number of data sources. The goal is to find the optimal weights of different data
sources (parameterized by x ∈ Rm), such that the trained model can have low validation loss
`val(·) This problem can be formulated as a bilevel optimization problem with upper-level
and lower-level functions given by:

f(x, y) := `val(y),

g(x, y) :=

m∑
i=1

σ(xi)`
i
tr(y).

(12)

where σ(xi) is the Softmax function such that σ(xi) = exp(xi)/
∑m

j=1 exp(xj).
In our experiment, we use the “Alpaca” dataset (Taori et al., 2023), which contains 52k

instructions and demonstration outputs generated by OpenAI’s “text-davinci-003” engine.
We split the dataset into a training set and a validation set in an 8 : 2 ratio, and then
corrupt the training set with a proportion of p. The corruption is done by replacing the
demonstration outputs with an empty string “”. This naturally divides the dataset into
two sources: useful data and garbage data. We expect the algorithm can learn to assign
zero weights to the garbage data and use it to measure the performance of the algorithm.

We run the experiments on 8 × A40 GPUs. We compared our proposed stochastic
method F2BSA with related works F2SA (Kwon et al., 2023) and PBGD (Shen and Chen,
2023). We do not compare any HVP-based methods as we encounter difficulties in ob-
taining HVP oracles in multi-GPU training (also see Appendix G). Although the original
PBGD (Shen and Chen, 2023) only focuses on the deterministic case, we also implemented
a stochastic version of PBGD. For all the algorithms, we set batch size as 64, and a fixed
penalty with λ = 103. The results of different corruption ratios p is shown in Figure 6.3. It
can be seen from the figure that our proposed F2BSA converges much faster than baselines
F2SA (Kwon et al., 2023) and PBGD (Shen and Chen, 2023). The reason is that the unrea-
sonable choice of single-time-scale step sizes in baselines (the setting of ζ = 1 in (5) (Kwon
et al., 2023) and the joint update of (x, y) in Line 4, Algorithm 1 (Shen and Chen, 2023))
may significantly slow down the optimization process. This also reaffirms the importance

17

Chen, Ma and Zhang

of using the two-time-scale step size. Therefore, whether from a theoretical or a practical
standpoint, we recommend always using the two-time-scale approach for penalty methods.

7. Conclusions and Future Directions

This paper proposes a two-time-scale gradient-based method which achieves the the near-
optimal complexity in nonconvex-strongly-convex bilevel optimization. Our result closes the
gap between gradient-based and HVP-based methods. We also study stochastic extension
of this algorithm, its acceleration, and its ability to escape saddle points. The algorithms we
proposed improve the current best-known guarantees under various settings. We conclude
this paper with several potential directions for future research.

Logarithmic Factors in the Deterministic Case. The complexity of F2BA has an
additional log(1/ε) factor compared with the lower bound for finding first-order stationary
points (Carmon et al., 2020). Although this factor can be shaved for HVP-based methods
using tighter analysis (Ji et al., 2021), it remains open whether it is avoidable for penalty
methods considered in this paper.

Optimality in the Stochastic Case. The Õ(ε−6) upper bound by F2BSA improves
the previous Õ(ε−7) result by Kwon et al. (2023). However, it is unknown whether this
complexity is optimal for gradient-based methods. Recently, Kwon et al. (2024a) proved
an Ω(ε−6) lower bound for stochastic optimization with an O(ε)-y∗-aware oracle, which is
related to but different from stochastic bilevel problems. Tight lower bounds for stochastic
bilevel problems remains open, as also pointed out by Kwon et al. (2024a).

Constrained Bilevel Problems. In this work, we only consider the unconstrained case,
i.e. we have x ∈ Rdx and y ∈ Rdy . It would also be important to study the convergence
of gradient-based algorithms for constrained problems (Khanduri et al., 2023; Tsaknakis
et al., 2022; Xiao et al., 2023; Kwon et al., 2024b; Kornowski et al., 2024).

Single-Loop Methods. Our method adopts a double-loop structure. Designing single-
loop methods could be more efficient in certain scenarios, but the analysis would also be
more challenging (Hong et al., 2023; Khanduri et al., 2021; Chen et al., 2022, 2021, 2024b;
Dagréou et al., 2022). We also leave it in future works.

Acknowledgments

Lesi Chen thanks Jeongyeol Kwon for helpful discussions. Jingzhao Zhang is supported
by National Key R&D Program of China 2024YFA1015800 and Shanghai Qi Zhi Institute
Innovation Program.

18

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Appendix A. Notations for Tensors and Derivatives

We follow the notations of tensors used in Kolda and Bader (2009). For a three-way tensor
X ∈ Rd1×d2×d3 , we use [X]i1,i2,i3 to represent its (i1, i2, i3)-th element. The inner product of
two three-way tensors X ,Y is defined by 〈X ,Y〉 :=

∑
i1,i2,i3

[X]i1,i2,i3 ·[Y]i1,i2,i3 . The operator

norm of three-way tensor X ∈ Rd1×d2×d3 is defined by ‖X‖ := sup‖xi‖=1〈X , x1 ◦ x2 ◦ x3〉,
where the elements of x1 ◦ x2 ◦ x3 ∈ Rd1×d2×d3 is [x1 ◦ x2 ◦ x3]i1,i2,i3 := [x1]i1 · [x2]i2 · [x3]i3 .
It can be verified that such a definition generalizes the Euclidean norm of a vector and
the spectral norm of a matrix to tensors. For a three-way tensor X ∈ Rd1×d2×d3 and a
vector v ∈ Rd1 , their mode-1 product, denoted by X×̄1v, gives a matrix in Rd2×d3 with
elements [X×̄1v]i2,i3 :=

∑
i1

[X]i1,i2,i3 · [v]i1 . We define ×̄2 and ×̄3 in a similar way, and

it can be verified that ‖X×̄iv‖ ≤ ‖X‖‖v‖. For a three-way tensor X ∈ Rd1×d2×d3 and a
matrix A ∈ Rd′1×d1 , their mode-1 product, denoted by X ×1 A, gives a tensor in Rd′1×d2×d3
with elements [X ×1 A]i′1,i2,i3 :=

∑
i1

[X]i1,i2,i3 · [A]i′1,i1 . We define ×2 and ×3 in a similar
way, and it can also be verified that ‖X ×i A‖ ≤ ‖X‖‖A‖.

For a function h(x, y) : Rdx × Rdy → R, we denote ∇xh(x, y) ∈ Rdx to be the par-
tial gradient with respect to x, with elements given by [∇xh(x, y)]i := ∂f(x, y)/∂[x]i.
And we define ∇yh(x, y) ∈ Rdy in a similar way. We denote ∇2

xxh(x, y) ∈ Rdx × Rdx
to be the partial Hessian with respect to x, with elements given by [∇2

xxh(x, y)]i1,i2 :=
∂2h(x, y)/(∂[x]i1∂[x]i2). And we define ∇2

xyh(x, y) ∈ Rdx×Rdy , ∇2
yxh(x, y) ∈ Rdy×Rdx and

∇2
yyh(x, y) ∈ Rdy×Rdy in a similar way. We denote ∇3

xxxh(x, y) ∈ Rdx×Rdx×Rdx to be the
partial third-order derivative with respect to x, with elements given by [∇3

xxxh(x, y)]i1,i2,i3 :=
∂3h(x, y)/(∂[x]i1∂[x]i2∂[x]i3). And we define ∇3

xxyh(x, y) ∈ Rdx ×Rdx ×Rdy , ∇3
xyxh(x, y) ∈

Rdx×Rdy×Rdx , ∇3
xyyh(x, y) ∈ Rdx×Rdy×Rdy , ∇3

yyyh(x, y) ∈ Rdy×Rdy×Rdy , ∇3
yyxh(x, y) ∈

Rdy × Rdy × Rdx , ∇3
yxyh(x, y) ∈ Rdy × Rdx × Rdy and∇3

yxxh(x, y) ∈ Rdy × Rdx × Rdx in a

similar way. We denote ∇y∗(x) ∈ Rdx × Rdy to be the matrix with elements given by
[∇y∗(x)]i1,i2 := ∂[y∗(x)]i2/∂[x]i1 . We denote ∇2y∗(x) ∈ Rdx × Rdx × Rdy to be the three-
way tensor with elements given by [∇2y∗(x)]i1,i2,i3 := ∂2[y∗(x)]i3/(∂[x]i1∂[x]i2). And we
define ∇y∗λ(x) and ∇2y∗λ(x) in a similar way.

Appendix B. Lemmas for Finding First-Order Stationarity

Lemma B.1 (Kwon et al. (2023)) Under Assumption 3.1, for λ ≥ 2Lf/µ, Lλ(x, ·) is
(λµ/2)-strongly convex.

Lemma B.2 Under Assumption 3.1, for λ ≥ 2Lf/µ, it holds that

‖y∗λ(x)− y∗(x)‖ ≤
Cf
λµ

Proof By the first-order optimality condition, we know that

∇yf(x, y∗λ(x)) + λ∇yg(x, y∗λ(x)) = 0.

Then we have

‖y∗λ(x)− y∗(x)‖ ≤ 1

µ
‖∇yg(x, y∗λ(x))‖ =

1

λµ
‖∇yf(x, y∗λ(x))‖ ≤

Cf
λµ

19

Chen, Ma and Zhang

As a direct consequence, we can show that L∗x and ϕ(x) are close.

Lemma B.3 Under Assumption 3.1, for λ ≥ 2Lf/µ, it holds that |L∗λ(x)− ϕ(x)| ≤ D0/λ,
where

D0 :=

(
Cf +

CfLg
2µ

)
Cf
µ

= O(`κ2).

Proof A simple calculus shows that

|L∗λ(x)− ϕ(x)|
≤ |f(x, y∗λ(x))− f(x, y∗(x))|+ λ|g(x, y∗λ(x))− g(x, y∗(x))|

≤ Cf‖y∗λ(x)− y∗(x)‖+
λLg

2
‖y∗λ(x)− y∗(x)‖2

≤
(
Cf +

CfLg
2µ

)
‖y∗λ(x)− y∗(x)‖

≤
(
Cf +

CfLg
2µ

)
Cf
λµ

.

The following result is the key to designing fully first-order methods for bilevel optimization,
first proved in Lemma 3.1 in Kwon et al. (2023). We provide the proof here for completeness.

Lemma B.4 Under Assumption 3.1, for λ ≥ 2Lf/µ, it holds that ‖∇L∗λ(x) − ∇ϕ(x)‖ ≤
D1/λ, where

D1 :=

(
Lf +

ρgLg
µ

+
CfLgρg

2µ2
+
Cfρg
2µ

)
Cf
µ

= O(`κ3). (13)

Proof Taking total derivative on ϕ(x) = f(x, y∗(x)), we obtain the following result:

∇ϕ(x) = ∇xf(x, y∗(x))−∇2
xyg(x, y∗(x))[∇yyg(x, y∗(x))]−1∇yf(x, y∗(x)). (14)

Also, we know that

∇L∗λ(x) = ∇xf(x, y∗λ(x)) + λ(∇xg(x, y∗λ(x))−∇xg(x, y∗(x))).

By simple calculus, we have

∇L∗λ(x)−∇ϕ(x)

= ∇xf(x, y∗λ(x))−∇xf(x, y∗(x))

+∇2
xyg(x, y∗(x))[∇yyg(x, y∗(x))]−1(∇yf(x, y∗(x))−∇yf(x, y∗λ(x))

+ λ∇2
xyg(x, y∗(x))[∇yyg(x, y∗(x))]−1×

(∇2
yyg(x, y∗(x))(y∗λ(x)− y∗(x)) +∇yg(x, y∗(x))−∇yg(x, y∗λ(x)))

20

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

+ λ(∇xg(x, y∗λ(x))−∇xg(x, y∗(x))−∇2
xyg(x, y∗(x))(y∗λ(x)− y∗(x))).

Taking norm on both sides,

‖∇L∗λ(x)−∇ϕ(x)‖ ≤ Lf‖y∗λ(x)− y∗(x)‖+
ρgLg
µ
‖y∗λ(x)− y∗(x)‖

+
λLgρg

2µ
‖y∗λ(x)− y∗(x)‖2 +

λρg
2
‖y∗λ(x)− y∗(x)‖2

≤
(
Lf +

ρgLg
µ

+
CfLgρg

2µ2
+
Cfρg
2µ

)
‖y∗λ(x)− y∗(x)‖

≤
(
Lf +

ρgLg
µ

+
CfLgρg

2µ2
+
Cfρg
2µ

)
Cf
λµ

Lemma B.5 Under Assumption 3.1, for λ ≥ 2Lf/µ, it holds that ‖∇y∗(x) − ∇y∗λ(x)‖ ≤
D2/λ, where

D2 :=

(
1

µ
+

2Lg
µ2

)(
Lf +

Cfρg
µ

)
= O(κ3).

Proof Taking derivative on both sides of ∇yg(x, y∗(x)) = 0 yields

∇2
xyg(x, y∗(x)) +∇y∗(x)∇2

yyg(x, y∗(x)) = 0. (15)

Rearranging, we can obtain

∇y∗(x) = −∇2
xyg(x, y∗(x))[∇2

yyg(x, y∗(x))]−1. (16)

Similarly, we also have

∇y∗λ(x) = −∇2
xyLλ(x, y∗λ(x))[∇2

yyLλ(x, y∗λ(x))]−1. (17)

Using the matrix identity A−1 −B−1 = A−1(B −A)B−1, we have∥∥∥∥∥∥[∇2
yyg(x, y∗(x))]−1 −

[
∇2
yyLλ(x, y∗λ(x))

λ

]−1
∥∥∥∥∥∥

≤
∥∥[∇2

yyg(x, y∗λ(x))]−1
∥∥∥∥∥∥∥∇2

yyLλ(x, y∗λ(x))

λ
−∇2

yyg(x, y∗(x))

∥∥∥∥∥
∥∥∥∥∥∥
[
∇2
yyLλ(x, y∗λ(x))

λ

]−1
∥∥∥∥∥∥

≤ 2

µ2

∥∥∥∥∥∇2
yyf(x, y∗λ(x))

λ
+∇2

yyg(x, y∗λ(x))−∇2
yyg(x, y∗(x))

∥∥∥∥∥
≤ 2

µ2

(
Lf
λ

+ ρg‖y∗λ(x)− y∗(x)‖
)

≤ 2

λµ2

(
Lf +

Cfρg
µ

)
.

(18)

21

Chen, Ma and Zhang

Note that the setting of λ ≥ 2Lf/µ implies ‖∇2
xyL(· , ·)‖ ≤ 2λLg, then we further have

‖∇y∗λ(x)−∇y∗(x)‖

≤

∥∥∥∥∥∇2
xyg(x, y∗(x))−

∇2
xyLλ(x, y∗λ(x))

λ

∥∥∥∥∥∥∥[∇2
yyg(x, y∗(x))]−1

∥∥
+

∥∥∥∥∥∇2
xyLλ(x, y∗λ(x))

λ

∥∥∥∥∥
∥∥∥∥∥∥[∇2

yyg(x, y∗(x))]−1 −

[
∇2
yyLλ(x, y∗λ(x))

λ

]−1
∥∥∥∥∥∥

≤ 1

µ

∥∥∥∥∥∇2
xyg(x, y∗(x))−∇2

xyg(x, y∗λ(x))−
∇2
xyf(x, y∗λ(x))

λ

∥∥∥∥∥+
2Lg
λµ2

(
Lf +

Cfρg
µ

)
≤
(

1

λµ
+

2Lg
λµ2

)(
Lf +

Cfρg
µ

)
.

It is clear that ‖∇y∗(x)‖ ≤ Lg/µ, therefore y∗(x) is (Lg/µ)-Lipschitz. Below, we show
that a similar result also holds for y∗λ(x).

Lemma B.6 Under Assumption 3.1, for λ ≥ 2Lf/µ, it holds that ‖∇y∗λ(x)‖ ≤ 4Lg/µ.

Proof Recall Equation 17 that

∇y∗λ(x) = −∇2
xyLλ(x, y∗λ(x))[∇2

yyLλ(x, y∗λ(x))]−1.

We arrive at the conclusion by noting that ∇2
xyLλ(· , ·) � 2λLg and ∇2

yyLλ(· , ·) � λµ/2
by Lemma B.1.

This implies that y∗λ(x) is (4Lg/µ)-Lipschitz.

Lemma B.7 Under Assumption 3.1, for λ ≥ 2Lf/µ, ∇L∗λ(x) is D3-Lipschitz, where

D3 := Lf +
4LfLg
µ

+
Cfρg
µ

+
CfLgρg
µ2

+ LgD2 = O(κ3).

Proof Note that

∇L∗λ(x) = ∇xf(x, y∗λ(x))︸ ︷︷ ︸
A(x)

+λ(∇xg(x, y∗λ(x))−∇xg(x, y∗(x)))︸ ︷︷ ︸
B(x)

. (19)

where A(x) and B(x) are both mappings Rdx → Rdx . From Lemma B.6 we know that y∗λ(x)
is (4Lg/µ)-Lipschitz. This further implies that A(x) is (1 + 4Lg/µ)Lf -Lipschitz. Next, we
bound the Lipschitz coefficient of B(x) via its derivative ∇B(x) : Rdx → Rdx × Rdx , which
has the following form by taking total derivative on B(x):

∇B(x) = λ(∇2
xxg(x, y∗λ(x))−∇2

xxg(x, y∗(x)))

+ λ
(
∇y∗λ(x)∇2

yxg(x, y∗λ(x))−∇y∗(x)∇2
yxg(x, y∗(x))

)
.

(20)

22

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

And we can bound the operator norm of ∇B(x) by:

‖∇B(x)‖ ≤ λ‖∇2
xxg(x, y∗λ(x))−∇2

xxg(x, y∗(x))‖
+ λ‖∇y∗(x)‖‖∇2

yxg(x, y∗λ(x))−∇2
yxg(x, y∗(x))‖

+ λ‖∇y∗λ(x)−∇y∗(x)‖‖∇2
yxg(x, y∗λ(x))‖

≤ λρg
(

1 +
Lg
µ

)
‖y∗λ(x)− y∗(x)‖+ λLg‖∇y∗λ(x)−∇y∗(x)‖

≤
(

1 +
Lg
µ

)
Cfρg
µ

+ LgD2,

where we use Lemma B.6 in the second inequality; Lemma B.2 and B.5 in the third one.

Appendix C. Lemmas for Finding Second-Order Stationarity

Lemma C.1 Under Assumption 3.1 and 3.2, for λ ≥ 2Lf/µ, we have ‖∇2y∗(x)−∇2y∗λ(x)‖ ≤
D4/λ, where

D4 :=
2ρg
µ2

(
1 +

Lg
µ

)2(
Lf +

Cfρg
µ

)
+

14LgρgD2

µ2
+

50L2
g

µ3

(
Cfνg
µ

+ ρf

)
= O(κ5).

Proof First of all, we calculate the explicit form of ∇2y∗(x) and ∇2y∗λ(x).

By taking the derivative with respect to x on

∇2
xyg(x, y∗(x)) +∇y∗(x)∇2

yyg(x, y∗(x)) = 0,

we obtain

∇3
xxyg(x, y∗(x)) +∇3

yxyg(x, y∗(x))×1 ∇y∗(x) +∇2y∗(x)×3 ∇2
yyg(x, y∗(x))

+∇3
xyyg(x, y∗(x))×2 ∇y∗(x) +∇3

yyyg(x, y∗(x))×1 ∇y∗(x)×2 ∇y∗(x) = 0.

Rearranging to get

∇2y∗(x) = −
(
∇3
xxyg(x, y∗(x)) +∇3

yxyg(x, y∗(x))×1 ∇y∗(x)
)
×3 [∇2

yyg(x, y∗(x))]−1

−∇3
xyyg(x, y∗(x))×2 ∇y∗(x)×3 [∇2

yyg(x, y∗(x))]−1

−∇3
yyyg(x, y∗(x))×1 ∇y∗(x)×2 ∇y∗(x)×3 [∇2

yyg(x, y∗(x))]−1.

(21)

Similarly,

∇2y∗λ(x) = −
(
∇3
xxyLλ(x, y∗λ(x)) +∇3

yxyLλ(x, y∗λ(x))×1 ∇y∗λ(x)
)
×3 [∇2

yyLλ(x, y∗λ(x))]−1

−∇3
xyyLλ(x, y∗λ(x))×2 ×3[∇2

yyLλ(x, y∗λ(x))]−1

−∇y∗λ(x) +∇3
yyyLλ(x, y∗λ(x))×1 ∇y∗λ(x)×2 ∇y∗λ(x)×3 [∇2

yyLλ(x, y∗λ(x))]−1.

(22)

23

Chen, Ma and Zhang

We then prove ‖∇2y∗(x) − ∇2y∗λ(x)‖ = O(1/λ). We prove this by showing that the
difference between each corresponding term of ∇2y∗(x) and ∇2y∗λ(x) is O(1/λ). Note that∥∥∥∥∥∇3

xxyg(x, y∗(x))−
∇3
xxyLλ(x, y∗λ(x))

λ

∥∥∥∥∥ ≤ νg‖y∗λ(x)− y∗(x)‖+
ρf
λ
≤ 1

λ

(
Cfνg
µ

+ ρf

)
,

and∥∥∥∥∥∇3
yxyg(x, y∗(x))×1 ∇y∗(x)−

∇3
yxyLλ(x, y∗λ(x))×1 ∇y∗λ(x)

λ

∥∥∥∥∥
≤ ‖∇y∗(x)−∇y∗λ(x)‖‖∇3

yxyg(x, y∗(x))‖+ ‖∇y∗λ(x)‖

∥∥∥∥∥∇3
yxyg(x, y∗(x))−

∇3
yxyLλ(x, y∗λ(x))

λ

∥∥∥∥∥
≤ ρgD2

λ
+

4Lg
λµ

(
Cfνg
µ

+ ρf

)
,

and ∥∥∥∥∥∇3
yyyg(x, y∗(x))×1 ∇y∗(x)×2 ∇y∗(x)−

∇3
yyyLλ(x, y∗λ(x))×1 ∇y∗λ(x)×2 ∇y∗λ(x)

λ

∥∥∥∥∥
≤ ‖∇y∗(x)‖‖∇3

yyyg(x, y∗(x))‖‖∇y∗(x)−∇y∗λ(x)‖
+ ‖∇y∗λ(x)‖‖∇3

yyyg(x, y∗(x))‖‖∇y∗(x)−∇y∗λ(x)‖

+ ‖∇y∗λ(x)‖2
∥∥∥∥∥∇3

xxyg(x, y∗(x))−
∇3
xxyLλ(x, y∗λ(x))

λ

∥∥∥∥∥
≤ 5LgρgD2

λµ
+

16L2
g

λµ2

(
Cfνg
µ

+ ρf

)
,

we can obtain that

‖∇2y∗(x)−∇2y∗λ(x)‖

≤ ρg
(

1 +
Lg
µ

)2
∥∥∥∥∥∥[∇2

yyg(x, y∗(x))]−1 −

[
∇2
yyLλ(x, y∗λ(x))

λ

]−1
∥∥∥∥∥∥

+

(
7LgρgD2

λµ
+

25L2
g

λµ2

(
Cfνg
µ

+ ρf

))∥∥∥∥∥∥
[
∇2
yyLλ(x, y∗λ(x))

λ

]−1
∥∥∥∥∥∥

≤ 2ρg
λµ2

(
1 +

Lg
µ

)2(
Lf +

Cfρg
µ

)
+

14LgρgD2

λµ2
+

50L2
g

λµ3

(
Cfνg
µ

+ ρf

)
,

where we use Equation 18 in the second inequality.

Lemma C.2 Under Assumption 3.1 and 3.2, for λ ≥ 2Lf/µ, ∇2L∗λ(x) is D5-Lipschitz,
where

D5 :=

(
1 +

4Lg
µ

)2(
3ρf +

2Lfρg
µ

)
+

(
1 +

Lg
µ

)2 Cfνg
µ

24

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

+

(
2 +

5Lg
µ

)
D2ρg +

(
1 +

Lg
µ

)2 Cfρ
2
g

µ2
+ LgD4 = O(`κ5).

Proof Similar to the proof of Lemma B.7, we split ∇2L∗λ(x) into two terms:

∇2L∗λ(x) = ∇A(x) +∇B(x),

where both the mappings A(x) and B(x) both follow the definitions in Equation 19. rTaking
total derivative on A(x), we obtain

∇A(x) = ∇2
xxf(x, y∗λ(x)) +∇y∗λ(x)∇2

yxf(x, y∗λ(x)).

And recall Equation 20 that

∇B(x) = λ(∇2
xxg(x, y∗λ(x))−∇2

xxg(x, y∗(x)))

+ λ
(
∇y∗λ(x)∇2

yxg(x, y∗λ(x))−∇y∗(x)∇2
yxg(x, y∗(x))

)
.

Then we bound the Lipschitz coefficient of ∇A(x) and ∇B(x), respectively.

From Equation 21 we can calculate that

‖∇2y∗(x)‖ ≤
(

1 +
Lg
µ

)2 ρg
µ
. (23)

Similarly, from Equation 22 we can calculate that

‖∇2y∗λ(x)‖ ≤
(

1 +
4Lg
µ

)2 (ρf
λ

+ ρg

) 2

µ
≤
(

1 +
4Lg
µ

)2(2ρf
Lf

+
2ρg
µ

)
. (24)

From Lemma B.6 we know that y∗λ(x) is (4Lg/µ)-Lipschitz. This further implies that both
∇2
xxf(x, y∗λ(x)) and ∇2

yxf(x, y∗λ(x)) are (1+4Lg/µ)ρf -Lipschitz. Then, for any x1, x2 ∈ Rdx ,
we have

‖∇A(x1)−∇A(x2)‖
≤ ‖∇2

xxf(x1, y
∗
λ(x1))−∇2

xxf(x2, y
∗
λ(x2))‖

+ ‖∇y∗λ(x1)∇2
yxf(x1, y

∗
λ(x1))−∇y∗λ(x2)∇2

yxf(x1, y
∗
λ(x1))‖

+ ‖∇y∗λ(x2)∇2
yxf(x1, y

∗
λ(x1))−∇y∗λ(x2)∇2

yxf(x2, y
∗
λ(x2))‖

≤ ‖∇2
xxf(x1, y

∗
λ(x1))−∇2

xxf(x2, y
∗
λ(x2))‖

+ ‖∇y∗λ(x1)−∇y∗λ(x2)‖‖∇2
yxf(x1, y

∗
λ(x1))‖

+ ‖∇y∗λ(x2)‖‖∇2
yxf(x1, y

∗
λ(x1))−∇2

yxf(x2, y
∗
λ(x2))‖

≤

((
1 +

4Lg
µ

)2

ρf +

(
1 +

4Lg
µ

)2(2ρf
Lf

+
2ρg
µ

)
Lf

)
︸ ︷︷ ︸

C1

‖x1 − x2‖,

where C1 gives the upper bound of the Lipschitz coefficient of the mapping ∇A(x).

25

Chen, Ma and Zhang

To bound the Lipschitz coefficient of ∇B(x), we first derive the explicit form of the
mapping ∇2B(x) : Rdx → Rdx × Rdx × Rdx by:

∇2B(x) = ∇2y∗λ(x)×3 [∇2
yxf(x, y∗λ(x))]>

+ λ(∇3
xxxg(x, y∗λ(x))−∇3

xxxg(x, y∗(x)))

+ λ(∇3
yxxg(x, y∗λ(x))×1 ∇y∗λ(x)−∇3

yxxg(x, y∗(x))×1 ∇y∗(x))

+ λ
(
∇3
xyxg(x, y∗λ(x))×2 ∇y∗λ(x)−∇3

xyxg(x, y∗(x))×2 ∇y∗(x)
)

+ λ
(
∇3
yyxg(x, y∗λ(x))×1 ∇y∗λ(x)×2 ∇y∗λ(x)−∇3

yyxg(x, y∗(x))×1 ∇y∗(x)×2 ∇y∗(x)
)

+ λ
(
∇2y∗λ(x)×3 [∇2

yxg(x, y∗λ(x))]> −∇2y∗(x)×3 [∇2
yxg(x, y∗(x))]>

)
.

Then we can bound the Lipschitz coefficient of ∇B(x) via the operator norm of ∇2B(x):

C2 := ‖∇2B(x)‖
≤ ‖∇3

xxxg(x, y∗(x))−∇3
xxxg(x, y∗λ(x))‖

+ λ‖∇y∗(x)‖‖∇3
yxxg(x, y∗(x))−∇3

yxxg(x, y∗λ(x))‖
+ λ‖∇y∗λ(x)−∇y∗(x)‖‖∇3

yxxg(x, y∗λ(x))‖
+ λ‖∇y∗(x)‖‖∇3

xyxg(x, y∗(x))−∇3
xyxg(x, y∗λ(x))‖

+ λ‖∇y∗(x)−∇y∗λ(x)‖‖∇3
xyxg(x, y∗λ(x))‖

+ λ‖∇y∗(x)‖‖∇3
yyxg(x, y∗(x))‖‖∇y∗λ(x)−∇y∗(x)‖

+ λ‖∇y∗λ(x)‖‖∇3
yyxg(x, y∗(x))‖‖∇y∗λ(x)−∇y∗(x)‖

+ λ‖∇y∗(x)‖2‖∇3
yyxg(x, y∗(x))−∇3

yyxg(x, y∗λ(x))‖
+ λ‖∇2y∗(x)‖‖∇2

yxg(x, y∗(x))−∇2
yxg(x, y∗λ(x))‖

+ λ‖∇2y∗(x)−∇2y∗λ(x)‖‖∇2
yxg(x, y∗λ(x))‖,

which only requires using triangle inequality multiple times. Then we plug

‖y∗λ(x)− y∗(x)‖ = O(1/λ), By Lemma B.2

‖∇y∗λ(x)−∇y∗(x)‖ = O(1/λ), By Lemma B.5.

‖∇2y∗λ(x)−∇2y∗(x)‖ = O(1/λ), By Lemma C.1.

(25)

and

‖∇y∗(x)‖ = O(1), By Equation 16.

‖∇y∗λ(x)‖ = O(1), By Lemma B.6.

‖∇2y∗(x)‖ = O(1), By Equation 23.

(26)

into the bound for C2 to obtain that

C1 + C2 ≤
(

1 +
4Lg
µ

)2(
3ρf +

2Lfρg
µ

)
+

(
1 +

Lg
µ

)2 Cfνg
µ

+

(
2 +

5Lg
µ

)
D2ρg +

(
1 +

Lg
µ

)2 Cfρ
2
g

µ2
+ LgD4.

26

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Lemma C.3 Under Assumption 3.1 and 3.2, for λ ≥ 2Lf/µ, we have ‖∇2L∗λ(x)−∇2ϕ(x)‖ ≤
D6/λ, where

D6 := 2LgD
2
2 +

(
1 +

Lg
µ

)2
(
Cfρf
µ

+
CfLfρg
µ2

+
C2
fνg

2µ2
+
C2
fρ

2
g

2µ3

)
= O(`κ6).

Proof Taking total derivative on ∇ϕ(x) = ∇xf(x, y∗(x)) +∇y∗(x)∇yf(x, y∗(x)) yields

∇2ϕ(x) = ∇2
xxf(x, y∗(x)) +∇y∗(x)∇2

yxf(x, y∗(x)) +∇2y∗(x)×̄3∇yf(x, y∗(x))

+∇2
xyf(x, y∗(x))[∇y∗(x)]> +∇y∗(x)∇2

yyf(x, y∗(x))[∇y∗(x)]>.
(27)

Plug into the close form of ∇2y∗(x) given by Equation 21, we arrive at

∇2ϕ(x)

= ∇2
xxf(x, y∗(x))−∇3

xxyg(x, y∗(x))×3 [∇2
yyg(x, y∗(x))]−1×̄3∇yf(x, y∗(x))︸ ︷︷ ︸

(I)

+
(
∇2
yxf(x, y∗(x))−∇3

yxyg(x, y∗(x))×3 [∇2
yyg(x, y∗(x)]−1×̄3∇yf(x, y∗(x))

)
×1 ∇y∗(x)︸ ︷︷ ︸

(II)

+
(
∇2
xyf(x, y∗(x))−∇3

xyyg(x, y∗(x))×3 [∇2
yyg(x, y∗(x)]−1×̄3∇yf(x, y∗(x))

)
×2 ∇y∗(x)︸ ︷︷ ︸

(III)

+
(
∇2
yyf(x, y∗(x))−∇3

yyyg(x, y∗(x))×3 [∇2
yyg(x, y∗(x)]−1×̄3∇yf(x, y∗(x))

)
×1 ∇y∗(x)×2 ∇y∗(x)︸ ︷︷ ︸

(IV)

.

Recall that

∇2L∗λ(x) = ∇2
xxf(x, y∗λ(x)) + λ(∇2

xxg(x, y∗λ(x))−∇2
xxg(x, y∗(x)))

+∇y∗λ(x)∇2
yxLλ(x, y∗λ(x))− λ∇y∗(x)∇2

yxg(x, y∗(x)).

Our goal is show that ∇L∗λ(x) ≈ ∇2ϕ(x). At first glance, these two quantities are very
different and we can not directly bound their difference: ∇2ϕ(x) takes the form of A +
BC+C>B>+BDB>, while ∇2L∗λ(x) looks different. Below, we introduce an intermediary
quantity ∇̃2L∗λ(x) which takes a similar form as ∇2ϕ(x) to serves as a bridge:

∇̃2L∗λ(x) = ∇2
xxf(x, y∗λ(x)) + λ(∇2

xxg(x, y∗λ(x))−∇2
xxg(x, y∗(x)))︸ ︷︷ ︸

(I′)

+∇y∗(x)
(
∇2
yxLλ(x, y∗λ(x))− λ∇2

yxg(x, y∗(x))
)︸ ︷︷ ︸

(II′)

+
(
∇2
xyLλ(x, y∗λ(x))− λ∇2

xyg(x, y∗(x))
)

[∇y∗(x)]>︸ ︷︷ ︸
(III′)

+∇y∗(x)
(
∇2
yyLλ(x, y∗λ(x))− λ∇2

yyg(x, y∗(x))
)

[∇y∗(x)]>︸ ︷︷ ︸
(IV′)

.

(28)

27

Chen, Ma and Zhang

Now we show ∇2L∗λ(x) ≈ ∇̃2L∗λ(x) ≈ ∇2ϕ(x).

∇̃2L∗λ(x)−∇2L∗λ(x)

= (∇y∗(x)−∇y∗λ(x))∇2
yxLλ(x, y∗λ(x))+

+∇2
xyLλ(x, y∗λ(x))[∇y∗(x)]> +∇y∗(x)∇2

yyLλ(x, y∗λ(x))[∇y∗(x)]>

= (∇y∗(x)−∇y∗λ(x))∇2
yxLλ(x, y∗λ(x)) +∇2

xyLλ(x, y∗λ(x))[∇y∗(x)−∇y∗λ(x)]>

+∇y∗(x)∇2
yyLλ(x, y∗λ(x))[∇y∗(x)]> −∇y∗λ(x)∇2

yyLλ(x, y∗λ(x))[∇y∗λ(x)]>

= (∇y∗(x)−∇y∗λ(x))∇2
yxLλ(x, y∗λ(x)) +∇2

xyLλ(x, y∗λ(x))[∇y∗(x)−∇y∗λ(x)]>

+ (∇y∗(x)−∇y∗λ(x))∇2
yyLλ(x, y∗λ(x))[∇y∗λ(x)]>

+∇y∗λ(x)∇2
yyLλ(x, y∗λ(x))(∇y∗(x)−∇y∗λ(x))>

+ (∇y∗(x)−∇y∗λ(x))∇2
yyLλ(x, y∗λ(x))[∇y∗(x)−∇y∗λ(x)]>

= (∇y∗(x)−∇y∗λ(x))∇2
yyLλ(x, y∗λ(x))[∇y∗(x)−∇y∗λ(x)]>,

where we use the identity

UAU> − V AV > = (U − V)AV > + V A(U − V)> + (U − V)A(U − V)>

in the second last step, and we cancel the first four terms by Equation 17 in the final step.
Noting that ∇2

yyLλ(· , ·) � 2λLg, we have

‖∇̃2L∗λ(x)−∇2L∗λ(x)‖ ≤ 2λLg‖∇y∗(x)−∇y∗λ(x)‖2 ≤ 2LgD
2
2

λ
.

Now, we have successfully simplified our goal to showing ∇̃2L∗λ(x) ≈ ∇2ϕ(x), which can be
done by showing (I) ≈ (I′), (II) ≈ (II′), (III) ≈ (III′), and (IV) ≈ (IV′), separately. Firstly,

(I)− (I′)

= ∇2
xxf(x, y∗(x))−∇2

xxf(x, y∗λ(x))

+∇3
xxyg(x, y∗(x))×3 [∇2

yyg(x, y∗(x))]−1×̄3(∇yf(x, y∗λ(x))−∇yf(x, y∗(x)))

+ λ
(
∇2
xxg(x, y∗(x))−∇2

xxg(x, y∗λ(x)) +∇3
xxyg(x, y∗(x))×̄3(y∗λ(x)− y∗(x))

)
+ λ∇3

xxyg(x, y∗(x))×3 [∇2
yyg(x, y∗(x))]−1

×̄3

(
∇yg(x, y∗λ(x))−∇yg(x, y∗(x))−∇2

yyg(x, y∗(x))(y∗λ(x)− y∗(x))
)
.

Therefore,

‖(I)− (I′)‖ ≤ ρf‖y∗(x)− y∗λ(x)‖+
Lfρg
µ
‖y∗(x)− y∗λ(x)‖

+
λνg
2
‖y∗(x)− y∗λ(x)‖2 +

λρ2
g

2µ
‖y∗(x)− y∗λ(x)‖2

≤
Cfρf
λµ

+
CfLfρg
λµ2

+
C2
fνg

2λµ2
+
C2
fρ

2
g

2λµ3
.

28

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Using ‖∇y∗(x)‖ ≤ Lg/µ, we can similarly bound the difference between (II) and (II′) by

‖(II)− (II′)‖

≤ ‖∇y∗(x)‖
∥∥∥∇2

yxf(x, y∗(x))−∇3
yxyg(x, y∗(x))×3 [∇2

yyg(x, y∗(x)]−1×̄3∇yf(x, y∗(x))

−∇2
yxf(x, y∗λ(x))− λ

(
∇2
yxg(x, y∗λ(x))−∇2

yxg(x, y∗(x))
) ∥∥∥

≤ Lg
µ

(
Cfρf
λµ

+
CfLfρg
λµ2

+
C2
fνg

2λµ2
+
C2
fρ

2
g

2λµ3

)
,

And the bound for (III) and (III′) is the same. Finally, we know that∥∥(IV)− (IV′)
∥∥

≤ ‖∇y∗(x)‖2
∥∥∥∇2

yyf(x, y∗(x))−∇3
yyyg(x, y∗(x))×3 [∇2

yyg(x, y∗(x))]−1×̄3∇yf(x, y∗(x))

−∇2
yyf(x, y∗λ(x))− λ

(
∇2
yyg(x, y∗λ(x))−∇2

yyg(x, y∗(x))
) ∥∥∥

≤
L2
g

µ2

(
Cfρf
λµ

+
CfLfρg
λµ2

+
C2
fνg

2λµ2
+
C2
fρ

2
g

2λµ3

)
.

Combing the above bounds completes our proof.

Appendix D. Proofs of Finding First-Order Stationarity

We recall the standard result for gradient descent for strongly convex functions, which is
used for proving the linear convergence of ykt → y∗λ(xt) and zkt → y∗(xt).

Theorem D.1 (Bubeck et al. (2015, Theorem 3.10)) Suppose h(x) : Rd → R is β-
gradient Lipschitz and α-strongly convex. Consider the following update of gradient descent:

xt+1 = xt −
1

β
∇h(xt).

Let x∗ = arg minx∈Rd h(x). Then it holds that

‖xt+1 − x∗‖2 ≤
(

1− α

β

)
‖xt − x∗‖2.

Below, we prove that F2BA achieves the near-optimal first-order oracle complexity.

Theorem 4.1 Suppose Assumption 3.1 holds. Define ∆ := ϕ(x0) − infx∈Rdx ϕ(x) and
R := ‖y0 − y∗(x0)‖2. Let ηx � `−1κ−3, λ � max

{
κ/R, `κ2/∆, `κ3/ε

}
and set other

parameters in Algorithm 1 as

ηz = ηy =
1

2λLg
, K = O

(
Lg
µ

log

(
λLg
µ

))
,

then it can find an ε-first-order stationary point of ϕ(x) within O(`κ4ε−2 log(`κ/ε)) first-order
oracle calls, where `, κ are defined in Definition 3.1.

29

Chen, Ma and Zhang

Proof Let L be the gradient Lipschitz coefficient of L∗λ(x). According to Lemma 4.1 and
the setting of λ, we have

a. supx∈Rdx ‖∇L∗λ(x)−∇ϕ(x)‖ = O(ε).

b. L∗λ(x0)− infx∈Rdx L∗λ(x) = O(∆).

c. L := supx∈Rdx ‖∇2L∗λ(x)‖ = O(`κ3).

Due to Lemma B.2, we also have ‖y0 − y∗λ(x0)‖2 + ‖y0 − y∗(x0)‖2 = O(R). Now it suffices
to show that the algorithm can find an ε-first-order stationary of L∗λ(x). We begin from the
following descent lemma for gradient descent. Let ηx ≤ 1/(2L), then

L∗λ(xt+1) ≤ L∗λ(xt) + 〈∇L∗λ(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= L∗λ(xt)−
ηx
2
‖∇L∗λ(xt)‖2 −

(
ηx
2
− η2

xL

2

)
‖∇̂L∗λ(xt)‖2 +

ηx
2
‖∇̂L∗λ(xt)−∇L∗λ(xt)‖2

≤ L∗λ(xt)−
ηx
2
‖∇L∗λ(xt)‖2 −

1

4ηx
‖xt+1 − xt‖2 +

ηx
2
‖∇̂L∗λ(xt)−∇L∗λ(xt)‖2.

(29)

Note that

‖∇̂L∗λ(xt)−∇L∗λ(xt)‖ ≤ 2λLg‖yKt − y∗λ(xt)‖+ λLg‖zKt − y∗(xt)‖.

By Theorem D.1, we have

‖yKt − y∗λ(xt)‖2 ≤ exp

(
−µK

4Lg

)
‖y0
t − y∗λ(xt)‖2

‖zKt − y∗(xt)‖2 ≤ exp

(
−µK
Lg

)
‖z0
t − y∗(xt)‖2

Therefore, we have

‖∇̂L∗λ(xt)−∇L∗λ(xt)‖2 ≤ 4λ2L2
g exp

(
−µK

4Lg

)(
‖y0
t − y∗λ(xt)‖2 + ‖z0

t − y∗(xt)‖2
)

(30)

By Young’s inequality,

‖y0
t+1 − y∗λ(xt+1)‖2 ≤ 2‖yKt − y∗λ(xt)‖2 + 2‖y∗λ(xt+1)− y∗λ(xt)‖2

≤ 2 exp

(
−µK

4Lg

)
‖y0
t − y∗λ(xt)‖2 +

32L2
g

µ2
‖xt+1 − xt‖2,

where the second inequality follows Lemma B.6 that y∗λ(x) is (4Lg/µ)-Lipschitz. Similarly,
we can derive the recursion about ‖z0

t − y∗(xt)‖2.

Put them together and let K ≥ 8Lg/µ, we have

‖y0
t+1 − y∗λ(xt+1)‖2 + ‖z0

t+1 − y∗(xt+1)‖2 (31)

30

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

≤ 2 exp

(
−µK

4Lg

)(
‖y0
t − y∗λ(xt)‖2 + ‖z0

t − y∗(xt)‖2
)

+
34L2

g

µ2
‖xt+1 − xt‖2 (32)

≤ 1

2

(
‖y0
t − y∗λ(xt)‖2 + ‖z0

t − y∗(xt)‖2
)

+
34L2

g

µ2
‖xt+1 − xt‖2. (33)

Telescoping over t yields

‖y0
t − y∗λ(xt)‖2 + ‖z0

t − y∗(xt)‖2

≤
(

1

2

)t (
‖y0 − y∗λ(x0)‖2 + ‖y0 − y∗(x0)‖2

)
+

34L2
g

µ2

t−1∑
j=0

(
1

2

)t−1−j
‖xj+1 − xj‖2︸ ︷︷ ︸

:=(∗)

.

Plug into Equation 30, which, in conjunction with Equation 29, yields that

L∗λ(xt+1) ≤ L∗λ(xt)−
ηx
2
‖∇L∗λ(xt)‖2 −

1

4ηx
‖xt+1 − xt‖2 + 2ηx × λ2L2

g exp

(
−µK

4Lg

)
︸ ︷︷ ︸

:=γ

×(∗).

Telescoping over t further yields

ηx
2

T−1∑
t=0

‖∇L∗λ(xt)‖2 ≤ L∗λ(x0)− inf
x∈Rdx

L∗λ(x) + 4ηxγ
(
‖y0 − y∗λ(x0)‖2 + ‖y0 − y∗(x0)‖2

)
−

(
1

4ηx
−

136ηxγL
2
g

µ2

)
T−1∑
t=0

‖xt+1 − xt‖2

(34)

Let K = O(κ log(λκ)) = O(κ log(`κ/ε)) such that γ is sufficiently small with

γ ≤ min

{
µ2

1088η2
xL

2
g

,
1

4ηx

}
.

Then we have,

1

T

T−1∑
t=0

‖∇L∗λ(xt)‖2 ≤
2

ηxT

(
L∗λ(x0)− inf

x∈Rdx
L∗λ(x) + ‖y0 − y∗λ(x0)‖2 + ‖y0 − y∗(x0)‖2

)
.

Below, we focus on the stochastic setting. We need to use the following theorem for
large batch SGD to bound the error from inner loop.

Theorem D.2 Suppose h(x) : Rd → R is β-gradient Lipschitz and α-strongly convex.
Consider the following update of stochastic gradient descent (SGD):

xt+1 = xt −
1

β
∇h(xt;Bt),

31

Chen, Ma and Zhang

where the mini-batch gradient satisfies

EBt [∇h(xt;Bt)] = ∇h(xt), EBt‖∇h(xt;Bt)−∇h(xt)‖2 ≤
σ2

B
.

Then it holds that

E
[
‖xT − x∗‖2

]
≤
(

1− α

β

)T β
α
‖x0 − x∗‖2 +

σ2

α2B
,

where x∗ = arg minx∈Rd h(x).

Proof We have that

E [h(xt+1)− h∗] ≤ E
[
h(xt)− h∗ +∇h(xt)

>(xt+1 − xt) +
β

2
‖xt+1 − xt‖2

]
= E

[
h(xt)− h∗ −

1

2β
‖∇h(xt)‖2 +

1

2β
‖∇h(xt)−∇h(xt;Bt)‖2

]
≤
(

1− α

β

)
(h(xt)− h∗) +

σ2

2βB
.

Telescoping gives

E [h(xT)− h∗] ≤
(

1− α

β

)T
(h(x0)− h∗) +

σ2

2αB
.

We conclude the proof by using the fact that

α

2
‖x− x∗‖2 ≤ h(x)− h∗ ≤ β

2
‖x− x∗‖2.

Theorem 4.2 Suppose Assumption 3.1 and 4.1 hold. Let `, κ defined as Definition 3.1.
Define ∆ := ϕ(x0) − infx∈Rdx ϕ(x) and R := ‖y0 − y∗(x0)‖2. Let ηx � `−1κ−3, λ �
max

{
κ/R, `κ2/∆, `κ3/ε

}
and set other parameters in Algorithm 2 as

ηz = ηy =
1

2λLg
, Kt = Õ

(
Lg log δt

µ

)
,

Bout �
σ2
f + λ2σ2

g

ε2
, Bin �

L2
f + λ2L2

g

λ2µ2
·Bout.

where δt is defined via the recursion

δt+1 =
1

2
δt +

34L2
g

µ2
‖xt+1 − xt‖2 +

σ2
g

2LgBin
, δ0 = O(R),

then it can output a point such that E‖∇ϕ(x)‖ ≤ ε within T = O(`κ3ε−2) iterations. The
total number of stochastic first-order oracle calls is bounded by{

O(`κ6ε−4 log(`κ/ε)), σf > 0, σg = 0;

O(`3κ12ε−6 log(`κ/ε)), σf > 0, σg > 0.

32

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Proof By taking expectation in Equation 29, we get

E[L∗λ(xt+1)]

≤ E
[
L∗λ(xt)−

ηx
2
‖∇L∗λ(xt)‖2 −

1

4ηx
‖xt+1 − xt‖2 +

ηx
2
‖Gt −∇L∗λ(xt)‖2

]
.

(35)

Then to prove that this algorithm can output a point such that E‖∇ϕ(x)‖ ≤ ε, it suffices
to show E‖Gt −∇L∗λ(xt)‖2 = O(ε2) holds for all t. This requires

a. E‖∇xf(xt, y
K
t ;Bout)−∇xf(xt, y

∗
λ(xt))‖2 = O(ε2).

b. E‖∇xg(xt, y
K
t ;Bout)−∇xg(xt, y

∗
λ(xt))‖2 = O

(
ε2/λ2

)
.

c. E‖∇xg(xt, z
K
t ;Bout)−∇xg(xt, y

∗(xt))‖2 = O
(
ε2/λ2

)
.

Our setting of Bout shows that it suffices to have

max
{
E‖yKt − y∗λ(xt)‖2,E‖zKt − y∗(xt)‖2

}
= O

(
ε2

L2
f + λ2L2

g

)
,

And our setting of Bin and Kt fulfills these conditions if ‖y0
t −y∗λ(xt)‖2 +‖z0

t −y∗(xt)‖2 ≤ δt.
Now we use Theorem D.2 to establish the recursion of δt. Note that

E‖y0
t+1 − y∗λ(xt+1)‖2

≤ 2E‖yKt − y∗λ(xt)‖2 + 2E‖y∗λ(xt)− y∗λ(xt+1)‖2

≤ 4Lg
µ

exp

(
−µKt

2Lg

)
E‖y0

t − y∗λ(xt)‖2 +
32L2

g

µ2
‖xt+1 − xt‖2 +

σ2
g

4LgBin

≤ 1

2
E‖y0

t − y∗λ(xt)‖2 +
32L2

g

µ2
‖xt+1 − xt‖2 +

σ2
g

4LgBin

(36)

where the second last inequality uses Theorem D.2 and the last inequality holds once we
get Kt = Ω(κ log(κ)). A similar bound also holds for E‖z0

t+1 − y∗(xt+1)‖2. Putting them
together, we get that

δt+1 ≤
1

2
δt +

34L2
g

µ2
‖xt+1 − xt‖2 +

σ2
g

2LgBin

Then we telescope the recursion of δt and take expectation to obtain that

T−1∑
t=0

E[δt] ≤ 2δ0 +
68L2

g

µ2

T−1∑
t=0

E[‖xt+1 − xt‖2] +
σ2
g

LgBin

= 2δ0 +O(ηx∆ + Tη2
xε

2) +
σ2
g

LgBin
,

(37)

where we use Equation 35 in the last step. Let C be a constant that contains logarithmic
factors. We can the bound the expected total iteration number via

T−1∑
t=0

E[Kt] =
CLg
µ

T−1∑
t=0

E[log(δt)] ≤
CLgT

µ
log

(∑T−1
t=0 E[δt]

T

)
,

33

Chen, Ma and Zhang

Algorithm 5 F3BSA(x, y0)
1: z0 = y0

2: for t = 0, 1, · · · , T − 1

3: Sample random index (φtf , φ
t
g)

4: (Gt, yt+1, zt+1) = MLMC-HyperGradEst(xt, yt, zt, φ
t
f , φ

t
g,Mt, Nt, St)

5: xt+1 = xt − ηxGt
6: end for

Algorithm 6 MLMC-HyperGradEst(x, y0, z0, φf , φg,M,N, S)

1: for m = 1, · · · ,M
2: Draw J ∼ Geom(1/2)

3: Write (G
(j)
m , y

(j)
m , z

(j)
m) = HyperGradEst(x, y0, z0, N, j)

4: Gm = G
(0)
m + 2J(G

(J)
m −G(J−1)

m)I[J ≤ S]

5: end for

6: Ĝ = 1
M

∑M
m=1Gm, ŷ = y

(0)
1 , ẑ = y

(0)
1

7: return (Ĝ, ŷ, ẑ)

where we use Jensen’s inequality and the concavity of log(·). Note that
∑T−1

t=0 E[δt] can be
upper bounded via Equation 37. Finally, the total sample complexity of the algorithm is

Bin

T−1∑
t=0

Kt + TBout,

which is the claimed complexity by plugging the choice of T,Bin, Bout.

Appendix E. Removing the Large Batches in F2BSA

Theorem 4.2 requires large batch size Bout � (σ2
f + λ2σ2

g)/ε
2 to track the deterministic

algorithm. Below, we get rid of the large batches via a more intricate algorithm design. We
consider the single batch scenario, where each SGD update samples a single random index
(φf , φg). Define the following stochastic gradient

∇L∗λ(x;φf , φg) = ∇Lλ(x, y∗λ(x);φf , φg),

where ∇Lλ(x, y;φf , φg) = ∇xf(x, y;φf) + λ(∇xg(x, y;φg)−∇g∗(x;φg)).
(38)

It is clear that E∇L∗λ(x;φf , φg) = ∇L∗λ(x). Our improved convergence rate in Theorem 4.2
requires the following condition on the hyper-gradient estimator G.

Assumption E.1 Assume that the hyper-gradient estimator G satisfies

‖EG−∇L∗λ(x;φf , φg)‖2 ≤ ζbias = O(min{ε2, σ2
f + λ2σ2

g}),
E‖G− EG‖2 ≤ ζvarinace = O(σ2

f + λ2σ2
g),

(39)

34

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Algorithm 7 HyperGradEst(x, y0, z0, φf , φg, N,K)

1: ŷ = SGDSC(f(x, · ;φf) + λg(x, · ;φg), y0, N,K)

2: ẑ = SGDSC(λg(x, · ;φg), z0, N,K)

3: Ĝ = ∇xf(x, ŷ;φf) + λ(∇xg(x, ŷ;φg)−∇xg(x, ẑ;φg))

4: return (Ĝ, ŷ, ẑ)

Theorem E.1 Suppose Assumption 3.1 and 4.1 hold. Let `, κ defined as Definition 3.1.
Let λ � max{`κ2/∆, `κ3/ε}, where ∆ := ϕ(x0) − infx∈Rdx ϕ(x). If for any t the hyper-
gradient estimator Gt satisfies Assumption E.1, then iterating xt+1 = xt − ηxGt with

ηx �
ε2

(σ2
f + λ2σ2

g)`κ
3
, T � ∆

ηxε2
(40)

output x̄T = 1
T

∑T−1
t=0 xt such that E‖∇ϕ(x̄T)‖ ≤ ε.

In Assumption E.1, a nearly unbiased hyper-gradient estimator Gt is required to recover
the same convergence rate as SGD on ϕ(x). In F2BSA (Algorithm 2), this condition of
bias . ε2 is achieved by running inner-loop SGD with large batch to accuracy ε2. In
the following, we show it is possible to use existing technique (Asi et al., 2021; Hu et al.,
2021) for improving biased SGD, which helps relax the accuracy of inner-loop SGD to
σ2
f + λ2σ2

g . In this case, using single-batch SGD would not harm the convergence rate. We

call this improved algorithm F3BSA (see Algorithm 5). The ultimate algorithms look a little
complicated at first glance, but they all come from standard techniques in the literature.
We summarize the key steps below.

1. F3BSA (Algorithm 5) conducts a SGD update on variable x with the MLMC hyper-
gradient estimator Gt given by Algorithm 6.

2. The design of MCMC-HyperGradEst (Algorithm 6) has the same structure as the
standard MLMC estimator (Giles, 2008; Blanchet and Glynn, 2015). Following (Asi
et al., 2021; Hu et al., 2021), we wrap a high-bias hyper-gradient estimator (Algo-
rithm 7) into the MLMC structure to return a low-bias estimator.

3. HyperGradEst (Algorithm 7) applies SGD updates to solve the lower-level problems
with respect to variables y and z in Equation 6. Since the naive SGD update in
F2BSA can not meet the requirements in MLMC, we use the SGDSC algorithm (Allen-
Zhu, 2018a, Algorithm 2), which is presented in Section E.2 for completeness. It runs
multiple epochs of SGD with different step sizes like (Hazan and Kale, 2014) to achieve
the optimal rate in smooth strongly-convex stochastic first-order optimization.

The following theorem shows Algorithm 6 can output a nearly unbiased hyper-gradient
estimator at a low cost. The proof follows from (Asi et al., 2021).

35

Chen, Ma and Zhang

Theorem E.2 Suppose Assumption 3.1 and 4.1 hold. Let `, κ defined as Definition 3.1.
For any given x ∈ Rdx, then Algorithm 6 with

Nt = St � log

(
max{λ2`2δt, κ(σ2

f + λ2σ2
g)}

ζbias

)
, Mt �

κ(σ2
f + λ2σ2

g)Nt

ζvariance
(41)

outputs an hyper-gradient estimator Gt satisfying Condition 39 in O(κNtMt) SFO complex-
ity, where δt is the upper bound of ‖y0

t − y∗λ(xt)‖2 + ‖z0
t − y∗(xt)‖2.

Combining Theorem E.1 and E.2, we obtain the complexity of Algorithm 5 as follows.

Theorem E.3 Suppose Assumption 3.1 and 4.1 hold. Let `, κ defined as Definition 3.1.
Define ∆ := ϕ(x0)−infx∈Rdx ϕ(x) and R := ‖y0−y∗(x0)‖2. Let λ � max

{
κ/R, `κ2/∆, `κ3/ε

}
and set other parameters in Algorithm 5 according to Equation 40 and Equation 41, where
δt is defined via the recursion

δt+1 =
1

2
δt +

34L2
g

µ2
‖xt+1 − xt‖2 +

24(σ2
f + λ2σ2

g)

λµ(Lf + λLg)
, δ0 = O(R), (42)

then it can output a point such that E‖∇ϕ(x)‖ ≤ ε in the total SFO complexity of{
O(`κ5ε−4 log(`κ/ε)), σf > 0, σg = 0;

O(`3κ11ε−6 log(`κ/ε)), σf > 0, σg > 0.

The above theorem shows that F3BSA achieves the Õ(ε−4) and Õ(ε−6) SFO complexity
for the partially and fully stochastic cases as F2BSA while using a single batch at each
iteration. Another side advantage of F3BSA is that it also improves the dependency in
κ because its inner loop uses the optimal stochastic algorithm SGDSC (Allen-Zhu, 2018a,
Algorithm 2) to achieve better bias-variance tradeoff, instead of using naive SGD in F2BSA.

E.1 Missing Proofs for F3BSA

We present the missing proofs in this section.

Theorem E.1 Suppose Assumption 3.1 and 4.1 hold. Let `, κ defined as Definition 3.1.
Let λ � max{`κ2/∆, `κ3/ε}, where ∆ := ϕ(x0) − infx∈Rdx ϕ(x). If for any t the hyper-
gradient estimator Gt satisfies Assumption E.1, then iterating xt+1 = xt − ηxGt with

ηx �
ε2

(σ2
f + λ2σ2

g)`κ
3
, T � ∆

ηxε2
(40)

output x̄T = 1
T

∑T−1
t=0 xt such that E‖∇ϕ(x̄T)‖ ≤ ε.

Proof Let L be the constant of gradient Lipschitz continuity of L∗λ(x). From Lemma 4.1
we know that L = O(`κ3). We have that

E[L∗λ(xt+1)] ≤ E
[
L∗λ(xt) + 〈∇L∗λ(xt), xt+1 − xt〉+

L

2
‖xt+1 − xt‖2

]
36

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

= E
[
L∗λ(xt)− ηx∇L∗λ(xt)

>Gt +
η2
xL

2
‖Gt‖2

]
≤ L∗λ(xt)−

(
ηx
2
− η2

xL

2

)
‖∇L∗λ(xt)‖2

+
ηx
2
‖EGt −∇L∗λ(xt;φ

t
f , φ

t
g)‖2 +

η2
xL

2
E‖Gt −∇L∗λ(xt)‖2

≤ L∗λ(xt)−
(
ηx
2
− η2

xL

2

)
‖∇L∗λ(xt)‖2 +

ηx
2
‖EGt −∇L∗λ(xt;φ

t
f , φ

t
g)‖2

+ η2
xL(E‖Gt −∇L∗λ(xt;φ

t
f , φ

t
g)‖2 + E‖∇L∗λ(xt;φ

t
f , φ

t
g)−∇L∗λ(xt;φ

t
f , φ

t
g)‖2).

Plugging in Equation 39 and Equation 40, we have that

E[L∗λ(xt+1)] ≤ L∗λ(xt)−
ηx
4
‖∇L∗λ(xt)‖2 +O(ηxε

2).

Telescope over t = 0, 1, · · · , T − 1, we get

1

T

T−1∑
t=0

E‖∇L∗λ(xt)‖2 ≤
4(L∗λ(xt)− infx∈Rdx L∗λ(x))

ηxT
+O(ε2), (43)

which outputs an ε-stationary point in T = O(∆/(ηxε
2)) iterations.

Theorem E.2 Suppose Assumption 3.1 and 4.1 hold. Let `, κ defined as Definition 3.1.
For any given x ∈ Rdx, then Algorithm 6 with

Nt = St � log

(
max{λ2`2δt, κ(σ2

f + λ2σ2
g)}

ζbias

)
, Mt �

κ(σ2
f + λ2σ2

g)Nt

ζvariance
(41)

outputs an hyper-gradient estimator Gt satisfying Condition 39 in O(κNtMt) SFO complex-
ity, where δt is the upper bound of ‖y0

t − y∗λ(xt)‖2 + ‖z0
t − y∗(xt)‖2.

Proof By applying Theorem D.2, we know that Algorithm 7 ensures that

E‖G(j)
m −∇L∗λ(xt)‖2 ≤ (L2

f + λ2L2
g) ·
(
‖y(j)
m − y∗λ(xt)‖2 + ‖z(j)

m − y∗(xt)‖2
)

≤ (L2
f + λ2L2

g) ·

(
δt

2N+2K
+

σ2
f + λ2σ2

g

2K−3λµ(Lf + λLg)

)
,

(44)

The fact P(J = j) = 2−j implies that

EĜ = EG1 = EG(0)
1 +

St∑
j=1

P(J = j)2j(G
(j)
1 −G

(j−1)
1) = E

[
GSt1

]
.

Therefore, using Equation 44 the bias of our estimator can be upper bounded by

‖EĜ−∇L∗λ(xt)‖2 = ‖EGSt1 −∇L
∗
λ(xt)‖2 ≤ E‖GSt1 −∇L

∗
λ(xt)‖2

37

Chen, Ma and Zhang

≤ (L2
f + λ2L2

g) ·

(
δt

2Nt+2St
+

σ2
f + λ2σ2

g

2St−3λµ(Lf + λLg)

)
.

It is easy to check that ‖EĜ − ∇L∗λ(x)‖2 ≤ ζbias holds by our hyper-parameter setting.
Below, we analyze the variance of our estimator. Note that

E‖Gm −G(0)
m ‖2

=

St∑
j=1

P(J = j)22jE‖G(j)
m −G(j−1)

m ‖2

=

St∑
j=1

2jE‖G(j)
m −G(j−1)

m ‖2

≤
St∑
j=1

2j ·
(

2E‖G(j)
m −∇L∗λ(xt)‖2 + 2E‖G(j−1)

m −∇L∗λ(xt)‖2
)

≤ (L2
f + λ2L2

g)

St∑
j=1

10δt
2N+j

+
48(σ2

f + λ2σ2
g)

λµ(Lf + λLg)

≤ (L2
f + λ2L2

g) ·

(
10δt
2N

+
48(σ2

f + λ2σ2
g)

λµ(Lf + λLg)
· St

)
,

where the second last line uses Equation 44. Therefore, we have that

E‖Ĝ− EĜ‖2 =
1

Mt
E‖G1 − EG1‖2 ≤

1

Mt
E‖G1 −∇L∗λ(xt)‖2

≤ 2

Mt
E‖G1 −G(0)

1 ‖
2 +

2

Mt
E‖G(0)

1 −∇L
∗
λ(xt)‖2

≤
L2
f + λ2L2

g

Mt
·

(
22δt
2Nt

+
100(σ2

f + λ2σ2
g)

λµ(Lf + λLg)
· St

)
.

It is also easy to check that E‖Ĝ− EĜ‖2 ≤ ζvariance holds by our hyper-parameter setting.
Finally, the expected number of SFO calls is

8(Lf + λLg)

λµ

Nt +

St∑
j=1

P(J = j)2j

Mt =
8(Lf + λLg)

λµ
(Nt + St)Mt = O(κNtMt).

Theorem E.3 Suppose Assumption 3.1 and 4.1 hold. Let `, κ defined as Definition 3.1.
Define ∆ := ϕ(x0)−infx∈Rdx ϕ(x) and R := ‖y0−y∗(x0)‖2. Let λ � max

{
κ/R, `κ2/∆, `κ3/ε

}
and set other parameters in Algorithm 5 according to Equation 40 and Equation 41, where
δt is defined via the recursion

δt+1 =
1

2
δt +

34L2
g

µ2
‖xt+1 − xt‖2 +

24(σ2
f + λ2σ2

g)

λµ(Lf + λLg)
, δ0 = O(R), (42)

38

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

then it can output a point such that E‖∇ϕ(x)‖ ≤ ε in the total SFO complexity of{
O(`κ5ε−4 log(`κ/ε)), σf > 0, σg = 0;

O(`3κ11ε−6 log(`κ/ε)), σf > 0, σg > 0.

Proof By Theorem E.1 the outer-loop complexity is T = O
(

(σ2
f + λ2σ2

g)`κ
3∆ε−4

)
. By

Theorem E.2 the inner-loop complexity in the t-th iteration is Õ
(
κ2 log2 δt

)
for δt satisfying

‖y0
t − y∗λ(xt)‖2 + ‖z0

t − y∗(xt)‖2 ≤ δt. Similar to Theorem 4.2, we also require to specify the
recursion for δt with known problem parameters. Similar to Equation 36,we have that

E‖yt+1 − y∗λ(xt+1)‖2 ≤ 2E‖yt+1 − y∗λ(xt)‖2 + 2E‖y∗λ(xt)− y∗λ(xt+1)‖2

≤ 1

2
‖yt − y∗λ(xt)‖2 +

16(σ2
f + λ2σ2

g)

λµ(Lf + λLg)
+

32L2
g

µ2
‖xt+1 − xt‖2,

where the last step follows Theorem E.5 with Nt ≥ 8 and Lemma B.6 that y∗λ(x) is (4Lg/µ)-
Lipschitz continuous. Similarly, we also have that

E‖zt+1 − y∗(xt+1)‖2 ≤ 2E‖zt+1 − y∗(xt)‖2 + 2E‖y∗(xt)− y∗(xt+1)‖2

≤ 1

2
‖zt − y∗(xt)‖2 +

8σ2
g

µλLg
+

2L2
g

µ2
‖xt+1 − xt‖2,

where the last step follows Theorem E.5 with Nt ≥ 8 and that y∗(x) is (Lg/µ)-Lipschitz con-
tinuous. Combining the above two inequalities yields Equation 42. Telescoping Equation 42
yields that

T−1∑
t=0

E[δt] ≤ 2δ0 +
48(σ2

f + λ2σ2
g)

λµ(Lf + λLg)
+

68L2
g

µ2

T−1∑
t=0

E‖xt+1 − xt‖2

≤ 2δ0 +
48(σ2

f + λ2σ2
g)

λµ(Lf + λLg)
+

136L2
gη

2
x

µ2

T−1∑
t=0

E[‖∇L∗λ(xt)‖2 + ‖Gt −∇L∗λ(xt)‖2]

≤ 2δ0 +
48(σ2

f + λ2σ2
g)

λµ(Lf + λLg)
+

136L2
gη

2
xT

µ2
·
(
ε2 + σ2

f + λ2σ2
g

)
.

Therefore, the total SFO complexity (in expectation) is

Õ

(
κ2

T−1∑
t=0

log2 δt

)
≤ Õ

(
κ2T max

0≤t≤T−1
log2 δt

)
= Õ(κ2T),

where T is given in Equation 40.

E.2 The SGD Subroutine

This section recalls the optimal stochastic algorithm for smooth strongly-convex optimiza-
tion (Allen-Zhu, 2018a), which be used as the subroutines in F3BSA (Algorithm 5).

39

Chen, Ma and Zhang

Algorithm 8 SGD (h, x0, η,K)

1: for k = 0, 1, · · · ,K − 1
2: Sample a random index φt

3: xk+1 = xt − η∇h(xt;φt)

4: end for

5: return x̄K = 1
K

∑K
k=1 xk

Assumption E.2 Assume that the stochastic gradient satisfies

Eφt [∇h(xt;φt)] = ∇h(xt), Eφt‖∇h(xt;φt)−∇h(xt)‖2 ≤ σ2.

Theorem E.4 Allen-Zhu (2018a, Theorem 4.1 (a)) Suppose h(x) : Rd → R is β-gradient
Lipschitz and Assumption E.2 holds for the stochastic gradient. Algorithm 8 outputs x̄K
such that

Eh(x̄K)− h(x∗) ≤ ‖x0 − x∗‖2

2ηK
+

ησ2

2(1− ηβ)
,

where x∗ = arg minx∈Rdx h(x).

Based on the above result, we can analyze the SGDSC algorithm (Allen-Zhu, 2018a,
Algorithm 2), which achieves the optimal rate for smooth strongly-convex stochastic opti-
mization. We present this algorithm in Algorithm 9. The convergence of Algorithm 9 can
be found in (Allen-Zhu, 2018a, Theorem 4.1 (b)). However, they did not explicitly calculate
the constants in the convergence rates. Therefore, we provide a self-contained proof below.

Algorithm 9 SGDSC (h, x0, N,K)

1: for k = 1, · · · , N do xk = SGD(h, xk−1, 1/(2β), 4β/α)

2: for k = 1, · · · ,K do xN+k = SGD(h, xN+k−1, 1/(2
kβ), 2k+2β/α)

3: return xN+K

Theorem E.5 Suppose h(x) : Rd → R is β-gradient Lipschitz and α-strongly convex.
Algorithm 9 outputs xN+K satisfying

E‖xN+K − x∗‖2 ≤
‖x0 − x∗‖2

2N+2K
+

σ2

2K−2αβ
. (45)

The total stochastic first-order oracle (SFO) complexity is bounded by d4κ(N + 2K)e, where
κ = β/α is the condition number.

Proof Under the strong convexity assumption, Theorem E.4 yields that

E‖x̄K − x∗‖2 ≤
2

α
[Eh(x̄K)− h(x∗)] ≤ ‖x0 − x∗‖2

αηK
+

ησ2

α(1− ηβ)
. (46)

40

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

For the first N epochs, by the parameter setting in Algorithm 9 and Equation 46, we have

E‖xk − x∗‖2 ≤
‖xk−1 − x∗‖2

2
+
σ2

αβ
,

Telescoping for all the N epochs yields

E‖xN − x∗‖2 ≤
‖x0 − x∗‖2

2N
+

2σ2

αβ
. (47)

For the subsequent K epochs, by the parameter setting in Algorithm 9 and Equation 46,
we have that

E‖xN+k − x∗‖2 ≤
‖xN+k−1 − x∗‖2

4
+

σ2

2k−1αβ
.

Then it is easy to prove by induction that

E‖xN+k − x∗‖2 ≤
‖x0 − x∗‖2

2N+2k
+

σ2

2k−2αβ
. (48)

In the above, the induction base follows Equation 47. If we suppose that Equation 53 holds
for k = j − 1, then for k = j we have that

E‖xN+j+1 − x∗‖2 ≤
1

4
·
(
‖x0 − x∗‖2

2N+2(j−1)
+

σ2

2j−3αβ

)
+

σ2

2j−1αβ

≤ ‖x0 − x∗‖2

2N+2j
+

σ2

2j−2αβ
,

which completes the induction of Equation 48.

Appendix F. Proofs of Finding Second-Order Stationarity

The following theorem generalizes the result of Perturbed Gradient Descent (Jin et al.,
2017) to Inexact Perturbed Gradient Descent by allowing an inexact gradient ∇̂h(x) that
is close to the exact gradient ∇h(x).

Algorithm 10 Inexact Perturbed Gradient Descent

1: for t = 0, 1, · · · , T − 1
2: if ‖∇̂h(xt)‖ ≤ 4

5ε and no perturbation added in the last T steps

3: xt = xt − ηξt, where ξt ∼ B(r)

4: end if

5: xt+1 = xt − η∇̂h(xt)

6: end for

41

Chen, Ma and Zhang

Theorem F.1 (Huang et al. (2025, Lemma 2.9)) Suppose h(z) : Rd → R is L-gradient
Lipschitz and ρ-Hessian Lipschitz. Set the parameters in Algorithm 10 as

η =
1

L
, r =

ε

400ι3
, T =

L
√
ρε
· ι with ι ≥ 1 and δ ≥ L

√
d

√
ρε
ι228−ι. (49)

Once the following condition holds in each iteration:

‖∇̂h(xt)−∇h(xt)‖ ≤ min

{
1

20ι2
,

1

16ι22ι

}
ε︸ ︷︷ ︸

:=ζ

, (50)

then we can find a point xt satisfying

‖∇h(xt)‖ ≤ ε, ∇2h(xt) � −
√
ρε Id

within T = O
(
ι4∆Lε−2

)
iterations with probability 1− δ, where ∆ = h(x0)− infx∈Rd h(x).

Then we can show the convergence of perturbed F2BA.

Theorem 5.1 Suppose both Assumption 3.1 and 3.2 hold. Define ∆ := ϕ(x0)−infx∈Rdx ϕ(x)

and R := ‖y0 − y∗(x0)‖2. Let ηx � `−1κ−3, λ � max
{
κ/R, `κ2/∆, `κ3/ε, κ3.5

√
`/ε
}

and

set other parameters in Algorithm 1 as

ηz =
1

Lg
, ηy =

1

2λLg
, r = O(ε), Kt = Õ

(
Lg log δt

µ

)
,

where δt is defined via the recursion

δt+1 =
1

2
δt +

34L2
g

µ2
‖xt+1 − xt‖2, δ0 = O(R), (8)

then it can find an ε-second-order stationary point of ϕ(x) with probability at least 1 − δ
within Õ

(
`κ4ε−2

)
first-order oracle calls, where `, κ are defined in Definition 3.3 and the

notation Õ(·) hides logarithmic factors of dx, κ, `, and δ, ε.

Proof Let L be the gradient Lipschitz coefficient and ρ be the Hessian Lipschitz coefficient
of L∗λ(x), respectively. According to Lemma 4.1, Lemma 5.1, Lemma B.2 and the setting
of λ, we have

a. supx∈Rdx ‖∇L∗λ(x)−∇ϕ(x)‖ = O(ε).

b. supx∈Rdx ‖∇2L∗λ(x)−∇2ϕ(x)‖ = O(
√
ρε).

c. L∗λ(x0)− infx∈Rdx L∗λ(x) = O(∆).

d. ‖y0 − y∗λ(x0)‖2 + ‖y0 − y∗(x0)‖2 = O(R).

e. L := supx∈Rdx ‖∇2L∗λ(x)‖ = O(`κ3).

42

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

f. ρ := supx∈Rdx ‖∇3L∗λ(x)‖ = O(`κ5).

Then it suffices to show that the algorithm can find an ε-second-order stationary point of
L∗λ(x) under our choice of parameters. We apply Theorem F.1 to prove this result. Recall
ζ defined in Equation 50. It remains to show that

‖∇L∗λ(xt)−∇L∗λ(xt)‖ ≤ ζ (51)

holds for all t. Recall that

‖∇̂L∗λ(xt)−∇L∗λ(xt)‖ ≤ 2λLg‖yKt − y∗λ(xt)‖+ λLg‖zKt − y∗(xt)‖.

If we let

Kt =
4Lg
µ

log

(
4λLgδt
ζ

)
, (52)

where δt ≥ ‖y0
t − y∗λ(xt)‖2 + ‖z0

t − y∗(xt)‖2. Then by Theorem D.1, we have

max
{
‖yKt − y∗λ(xt)‖, ‖zKt − y∗(xt)‖

}
≤ ζ

4λLg
, (53)

which implies Equation 51. By Equation 31, if we let Kt ≥ 8Lg/µ for all t, then we can
show that

δt+1 ≤
1

2
δt +

34L2
g

µ2
‖xt+1 − xt‖2. (54)

The total number of iterations can be bounded by

T−1∑
t=0

Kt ≤
4Lg
µ

T−1∑
t=0

log

(
4λLgδt
ζ

)
≤ 4LgT

µ
log

(
4λLg

∑T−1
t=0 δt

ζT

)
(55)

first-order oracle calls. It remains to show that
∑T−1

t=0 δt is bounded. Telescoping over t in
Equation 54, we obtain

T−1∑
t=0

δt ≤ 2δ0 +
68L2

g

µ2

T−1∑
t=0

‖xt+1 − xt‖2. (56)

By Equation 34, if we let Kt ≥ Ω(κ log(λκ)) for all t, we can obtain

1

8η

T−1∑
t=0

‖xt+1 − xt‖2 ≤ L∗λ(x0)− inf
x∈Rdx

L∗λ(x) + ‖y0 − y∗λ(x0)‖2 + ‖y0 − y∗(x0)‖2.

Plugging into Equation 56 and then Equation 55 yields the upper complexity bound of
Õ(`κ4ε−2) as claimed.

The following theorem generalizes the result of Nonconvex AGD (Li and Lin, 2023)
by allowing an inexact gradient. To simplify the description, we define one round of the
algorithm between two successive restarts to be one “epoch” by following Li and Lin (2023).

43

Chen, Ma and Zhang

Algorithm 11 Inexact Nonconvex Accelerated Gradient Descent
1: x−1 = x0

2: while t < T
3: xt+1/2 = xt + (1− θ)(xt − xt−1)

4: xt+1 = xt+1/2 − η∇̂h(xt+1/2)
5: t = t+ 1
6: if t

∑t−1
j=0 ‖xj+1 − xj‖2 > B2

7: t = 0, x−1 = x0 = xt + ξt1‖∇̂h(xt+1/2)‖≤ B
2η
, where ξt ∼ B(r)

8: end if
9: end while

10: T0 = arg minbT
2
c≤t≤T−1 ‖xt+1 − xt‖

11: return xout = 1
T0+1

∑T0
t=0 xt+1/2

Theorem F.2 (Yang et al. (2023, Theorem 4.1)) Suppose h(z) : Rd → R is L-gradient
Lipschitz and ρ-Hessian Lipschitz. Assume that

√
ερ ≤ L. Set the parameters in Algorithm

11 as

χ = O(log(d/δε)), η =
1

4L
, T =

2χ

θ
, θ =

1

2
(ρεη2)1/4 < 1,

B =
1

288χ2

√
ε

ρ
, r = min

{
B +B2

√
2

,
θB

20T
,
θB2

2T

}
= O(ε).

Once the following condition holds in each iteration:

‖∇̂h(xt)−∇h(xt)‖ ≤ min

{
ρBζrθ

2
√
d
, ε2
}

︸ ︷︷ ︸
:=ζ

. (57)

The algorithm ensures that

h(xT)− h(x0) ≤ − ε1.5

663552
√
ρχ5

, (58)

where T denotes the iteration number when “if” condition in Algorithm 11 (Line 6) triggers:

T = min
t′

{
t′ | t′

t′−1∑
t=0

‖xt+1 − xt‖2 > B2

}
.

Therefore, the algorithm terminates in at most O(∆
√
ρχ5ε−3/2) epochs and O(∆

√
Lρ1/4χ6ε−1.75)

iterations. In addition, the output satisfies

‖∇h(xt)‖ ≤ ε, ∇2h(xt) � −
√
ρε Id,

with probability 1− δ, where ∆ = h(x0)− infx∈Rd h(x).

44

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Theorem 5.2 Suppose both Assumption 3.1 and 3.2 hold. Define ∆ := ϕ(x0)−infx∈Rdx ϕ(x)

and R := ‖y0 − y∗(x0)‖2. Let ηx � `−1κ−3, λ � max
{
κ/R, `κ2/∆, `κ3/ε, κ3.5

√
`/ε
}

and

set other parameters in Algorithm 1 as

ηz = ηy =
1

2λLg
, Kt = Õ

(
Lg log δt

µ

)
,

T � χ

θ
, B � 1

χ2

√
ε

`κ3
, θ �

(
`ε

κ

)1/4

, r = O(ε),

where χ = O(log(dx/δε)), where δt is defined via the recursion

δt+1 =
1

2
δt +

34L2
g

µ2
‖xt+1/2 − x−t+1/2‖

2, δ0 = O(R), (9)

then it can find an ε-second-order stationary point of ϕ(x) with probability at least 1 − δ
within Õ

(
κ`1/2ρ1/4ε−1.75

)
= Õ

(
κ3.75ε−1.75

)
first-order oracle calls, where `, κ are defined

in Definition 3.3 and the notation Õ(·) hides logarithmic factors of dx, κ, `, and δ, ε.

Proof Let T ′ be the number of total iterations. We renumber the iterates in the algorithm as
{xt}T

′−1
t=0 , {xt+1/2}T

′−1
t=0 , and let the corresponding inner loop number as {Kt}T

′−1
t=0 . Identical

to the proof of Theorem 5.1 (with a different definition of ζ that only effects the logarithmic
factors), we can set Kt = O(κ log(λLgδt/ζ)) to ensure Condition 57 to hold, where δt ≥
‖y0
t − y∗λ(xt+1/2)‖2 + ‖z0

t − y∗(xt+1/2)‖2 is ensured recursively identical to Equation 54. By
Equation 55 we have

T ′−1∑
t=0

Kt ≤
4LgT

µ
log

(
4λLg

∑T ′−1
t=0 δt

ζT ′

)

It remains to show that
∑T ′−1

t=0 δt is bounded. By Equation 56, it suffices to show that∑T ′−1
t=0 ‖xt+3/2 − xt+1/2‖2 is bounded. Since xt+1/2 = xt + (1 − θ)(xt − xt−1), it suffices

to show that
∑T ′−1

t=0 ‖xt+1 − xt‖2 is bounded. Because the number of epochs is finite by
Theorem F.2, it suffices to bound the term in each epoch. We know that

T −1∑
t=0

‖xt+1 − xt‖2

=
T −2∑
t=0

‖xt+1 − xt‖2 + ‖xT − xT −1‖2

≤ B2 + ‖xT − xT −1‖2.

We continue to bound the last term ‖xT − xT −1‖2. Since we have

xt+1 − xt = (1− θ)(xt − xt−1)− ηx∇̂L∗λ(xt+1/2).

45

Chen, Ma and Zhang

It remains to upper bound ‖∇̂L∗λ(xT −1/2)‖. As ‖∇̂L∗λ(xT −1/2)−∇L∗λ(xT −1/2)‖ = O(ζ), it
remains to upper bound ‖∇L∗λ(xT −1/2)‖. By (18) in Yang et al. (2023), we have that

L∗λ(xT) ≤ L∗λ(x0) +
B2

8ηx
− 3ηx

8
‖∇L∗λ(xT −1/2)‖2 +Bζ +

5ηxζ
2T

8
.

This implies that ‖∇L∗λ(xT −1/2)‖ is bounded once ∆ is bounded.

Appendix G. Implement Our Algorithms in the Distributed Setting

Our algorithms can also be easily applied to the distributed scenario, when both the upper
and lower-level functions adopt the following finite-sum structure:

f(x, y) :=
1

m

m∑
i=1

fi(x, y), g(x, y) :=
1

m

m∑
i=1

gi(x, y), (59)

where fi and gi denote the local function on the i-th agent. Under this setting, each
agent i has its own local variables within the optimization algorithm: X(i) ∈ Rdx , Y (i) ∈
Rdy , Z(i) ∈ Rdy . For the convenience of presenting the algorithm, we aggregate all the local
variables (denoted by row vectors) in one matrix and denote

X =

X(1)
...

X(m)

 ∈ Rm×dx , Y =

 Y (1)
...

Y (m)

 ∈ Rm×dy and Z =

Z(1)
...

Z(m)

 ∈ Rm×dy ,

We denote 1 = [1, · · · , 1]> ∈ Rm and use the lowercase with the bar to represent the mean
vector, such as x̄ = 1

m1>X. Let d = dx+dy and we similarly define the aggregated gradients

∇f(X,Y) =

 ∇f1(X(1), Y (1))
...

∇fm(X(m), Y (m))

 ∈ Rm×d, ∇g(X,Y) =

 ∇g1(X(1), Y (1))
...

∇gm(X(m), Y (m))

 ∈ Rm×d.

The classic paradigm for distributed algorithms is to compute the local gradients on each
agent in parallel, and then aggregate them on the server. However, challenges arise when
extending existing HVP-based methods for bilevel optimization from the single-machine
setting to the distributed setting. Given a variable x̄, one may want to calculate its hyper-
gradient (Equation 2) according to this paradigm by:

∇̂ϕ(x̄) = Π
(
∇xf(1x,1y∗(x̄))−∇2

xyf(1x,1y∗(x̄))[∇2
yyg(1x̄,1y∗(x̄))]−1∇yf(1x̄,1y∗(x̄))

)
,

where y∗(x) := arg miny∈Rdy g(x, y) and Π := 1
m11> denotes the aggregation operator on

the server. But the nested structure of the hyper-gradient indicates that ∇̂ϕ(x̄) 6= ∇ϕ(x̄).
As a consequence, researchers need to pay extra effort to make HVP-based methods work in
distributed bilevel problems (Tarzanagh et al., 2022; Chen et al., 2023). It is a non-trivial

46

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Algorithm 12 Distributed F2BA (x̄0, ȳ0, ηx, ηy, ηz, λ, T,K)

1: X0 = 1x̄0, Y0 = 1ȳ0, Z0 = 1ȳ0

2: for t = 0, 1, · · · , T − 1

3: Y 0
t = Yt, Z

0
t (i) = Zt

4: for k = 0, 1, · · · ,K − 1

5: V k
t = λ∇yg(Xt, Z

k
t), Ukt = ∇yf(Xt, Y

k
t) + λ∇yg(Xt, Y

k
t)

6: Aggregate and broadcast v̄kt = 1
m11>V k

t , ū
k
t = 1

m11>Ukt

7: Zk+1
t = Zkt − ηz1v̄kt , Y k+1

t = Y k
t − ηy1ūkt

8: end for

9: Ht = ∇xf(Xt, Y
K
t) + λ(∇xg(Xt, Y

K
t)−∇xg(Xt, Z

K
t))

10: Aggregate and broadcast h̄t = 1
m11>Ht

11: Xt+1 = Xt − ηx1h̄t
12: end for

issue to address, especially when the operator Π∇2
yyg(1x̄,1y∗(x̄)) is forbidden to avoid an

unacceptable O(d2
y) communication complexity.

In contrast, the distributed extension of F2BA naturally avoid this challenge since

∇L∗λ(x̄) = Π (∇xf(1x,1y∗λ(x̄)) + λ(∇xg(1x̄,1y∗λ(x̄))−∇xg(1x̄,1y∗(x̄)))) ,

where y∗λ(x) := arg miny∈Rdy f(x, y) + λg(x, y). It means that the previously mentioned

classic aggregation paradigm for distributed optimization directly works for F2BA without
any additional modification in the algorithm, as stated below.

Proposition G.1 Running Algorithm 12 is equivalent to running Algorithm 1 on the mean
variables

x̄ =
1

m
1>X, ȳ =

1

m
1>Y and z̄ =

1

m
1>Z.

Then the convergence of Algorithm 12 directly follows Theorem 4.1.

Corollary G.1 Suppose Assumption 3.1 holds. Algorithm 12 with the same parameters in
Theorem 4.1 can find Xt satisfying ‖∇ϕ(x̄t)‖ ≤ ε within O(`κ4ε−2 log(`κ/ε)) iterations and
O(`κ4ε−2 log(`κ/ε)) communication rounds.

Algorithm 12 is a near-optimal distributed algorithm since both the iteration and com-
munication complexity match the Ω(ε−2) lower bound (Theorem 1 by Lu and De Sa
(2021)), up to logarithmic factors. Compared with the HVP-based methods, the dis-
tributed F2BA is more practical since it neither requires a O(d2

y) communication com-
plexity per iteration (Yang et al., 2022) nor an additional distributed sub-solver for matrix
inverse (Tarzanagh et al., 2022; Chen et al., 2023).

We remark that all algorithms in our main text can be implemented in a similar way as
we implement F2BA in the distributed scenario.

47

Chen, Ma and Zhang

Appendix H. Discussions on Closely Related Works

In this section, we discuss our method with closely related works, including (Shen and
Chen, 2023; Kwon et al., 2023). Both our work and theirs use a penalty method. The
main difference in algorithm design is that their method uses a single-time-scale update
in (x, y) while we use a two-time-scale update to improve their O(λε−2 log(1/ε)) first-order
complexity to O(ε−2 log λ), where λ � ε−1 due to Lemma 4.1.

In the following, we give a more detailed comparison of another aspects, including the
optimality notion and assumptions of our work and theirs.

H.1 Discussions on the Weaker Notions in (Shen and Chen, 2023)

Shen and Chen (2023) also proposed a similar penalty-based algorithm, and proved that
the penalty method can find an ε-stationary point (formally defined below) of Lλ(x, y)
in O(λε−2 log(1/ε)) first-order oracle calls. Below, we show that their result implies a
O(ε−3 log(1/ε) first-order complexity to find an ε-stationary point of ϕ(x).

Definition H.1 We say (x, y) is an ε-stationary point of Lλ(x, y) if ‖∇Lλ(x, y)‖ ≤ ε.

We show that their notion and ours can be translated in both directions.

Lemma H.1 Suppose Assumption 3.1 and 4.1 hold. Set λ as Theorem 4.2.

1. If a point x is an ε-stationary point of ϕ(x) in terms of Definition 3.2, then we
can find a point y such that (x, y) is an 2ε-stationary point of Lλ(x, y) in terms
of Definition H.1 with O(κ log(κ/ε)), O(κ2ε−2), or O(κ8ε−2) first-order oracle calls
under the deterministic (σf = σg = 0), partially stochastic (σf > 0, σg = 0) and fully
stochastic setting (σf > 0, σg > 0) respectively.

2. If a point (x, y) is an ε-stationary point of Lλ(x, y) in terms of Definition H.1, then
it is a O(κε)-stationary point of ϕ(x) in terms of Definition 3.2.

Proof Note that ϕ(x) = miny∈Rdy Lλ(x, y). Then by Danskin’s lemma, we have ∇ϕ(x) =
∇xLλ(x, y∗λ(x)). Therefore, we further have

‖∇ϕ(x)‖ ≤ ‖∇xLλ(x, y)‖+ 2λLg‖y∗λ(x)− y∗(x)‖

≤ ‖∇xLλ(x, y)‖+
4Lg
µ
‖∇yLλ(x, y)‖,

where we use the fact that Lλ(x, y) is (2λLg)-gradient Lipschitz and (λµ/2)-strongly con-
vex in y. This shows that if (x, y) is an ε-stationary point of Lλ(x, y), then x is also an
O(κε)-stationary point of ϕ(x). Conversely, if x is an ε-stationary point of ϕ(x), the it
suffices to find y such that ‖∇yf(x, y)‖ ≤ O(ε/κ), then (x, y) is a 2ε-stationary point of
Lλ(x, y). Under the deterministic setting, this goal can be achieved with O(κ log(κ/ε)) first-
order oracle calls by Theorem D.1. Under the stochastic setting, this goal can be achieved
with O(κ2(σ2

f + λ2σ2
g)ε
−2) first-order oracle calls by (Allen-Zhu, 2018a, Theorem 3).

Note that one has to pay an additional O(κ) factor when translating a stationary point
of Lλ(x, y) using the notation of Shen and Chen (2023) to that of ϕ(x) using our notation.
Therefore, our notation is stronger than that of Shen and Chen (2023).

48

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

H.2 Discussion on the Additional Assumptions in (Kwon et al., 2023)

F2SA (Kwon et al., 2023, Algorithm 1) additionally uses the following assumption.

Assumption H.1 [Assumption 4 and 5 in Kwon et al. (2023)] Besides Assumption 3.1,
they also assume that

1. f(x, y) is Cf -Lipschitz in x;

2. g(x, y) is Cg-Lipschitz in y;

3. f(x, y) is ρf -Hessian Lipschitz in (x, y).

The role of Assumption H.1 is to ensure the Lipschitz continuity of y∗λ(x) in λ such that
the algorithm can use an increasing λ. However, this additional assumption is unnecessary
if we use a fixed λ. Kwon et al. (2023) sets λt+1 = λt + δt with the requirement

δt
λt
≤ 1

16
min

{
1,
Tµ

Lg

}
.

See (Kwon et al., 2023, Theorem 4, Condition (3b)). Therefore, setting δt = 0 also meets
the requirement. In this case, when we discuss the algorithm by Kwon et al. (2023), we
refer to this version with a fixed λ. This allows a fair comparison with our algorithm. After
both algorithms use the same penalty λ, the only difference lies in our step size, which is
the key to our improved analysis.

References

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding
approximate local minima faster than gradient descent. In SIGACT, 2017.

Zeyuan Allen-Zhu. How to make the gradients small stochastically: Even faster convex and
nonconvex SGD. In NeurIPS, 2018a.

Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than SGD. In NeurIPS,
2018b.

Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In
NeurIPS, 2018.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient
descent by gradient descent. In NeurIPS, 2016.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik
Sridharan. Second-order information in non-convex stochastic optimization: Power and
limitations. In COLT, 2020.

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical Pro-
gramming, 199(1-2):165–214, 2023.

49

Chen, Ma and Zhang

Hilal Asi, Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Stochastic bias-
reduced gradient methods. In NeurIPS, 2021.

Juhan Bae and Roger B. Grosse. Delta-STN: Efficient bilevel optimization for neural net-
works using structured response jacobians. In NeurIPS, 2020.

Nicholas Bishop, Long Tran-Thanh, and Enrico Gerding. Optimal learning from verified
training data. In NeurIPS, 2020.

Jose H. Blanchet and Peter W. Glynn. Unbiased monte carlo for optimization and functions
of expectations via multi-level randomization. In WSC, 2015.

Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction prob-
lems. In SIGKDD, 2011.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends R© in Machine Learning, 8(3-4):231–357, 2015.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. “Convex Until Proven
Guilty”: Dimension-free acceleration of gradient descent on non-convex functions. In
ICML, 2017.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points I. Mathematical Programming, 184(1-2):71–120, 2020.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points II: first-order methods. Mathematical Programming, 185(1):315–355,
2021.

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient descent:
The ultimate optimizer. In NeurIPS, 2022.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel
optimization: Hardness results and improved analysis. In COLT, 2024a.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating
stochastic gradient methods for bilevel problems. In NeurIPS, 2021.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. A single-timescale stochastic bilevel optimization
method. In AISTATS, 2022.

Xuxing Chen, Minhui Huang, Shiqian Ma, and Krishnakumar Balasubramanian. Decen-
tralized stochastic bilevel optimization with improved per-iteration complexity. In ICML,
2023.

Xuxing Chen, Tesi Xiao, and Krishnakumar Balasubramanian. Optimal algorithms for
stochastic bilevel optimization under relaxed smoothness conditions. JMLR, 2024b.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for
bilevel optimization that enables stochastic and global variance reduction algorithms. In
NeurIPS, 2022.

50

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. In NIPS, 2014.

Stephan Dempe. Foundations of bilevel programming. Springer Science & Business Media,
2002.

Justin Domke. Generic methods for optimization-based modeling. In AISTATS, 2012.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal
rates for zero-order convex optimization: The power of two function evaluations. IEEE
Transactions on Information Theory, 61(5):2788–2806, 2015.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of
gradient-based model-agnostic meta-learning algorithms. In AISTATS, 2020.

Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex SGD escaping
from saddle points. In COLT, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In ICML, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In ICML, 2018.

Jiahui Gao, Renjie Pi, LIN Yong, Hang Xu, Jiacheng Ye, Zhiyong Wu, WeiZhong Zhang,
Xiaodan Liang, Zhenguo Li, and Lingpeng Kong. Self-guided noise-free data generation
for efficient zero-shot learning. In ICLR, 2022.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. In COLT, 2015.

Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
In NeurIPS, 2016.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

Michael B. Giles. Multilevel monte carlo path simulation. Operations research, 2008.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In ICML, 2020.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms
for stochastic strongly-convex optimization. JMLR, 2014.

51

Chen, Ma and Zhang

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic
algorithm framework for bilevel optimization: Complexity analysis and application to
actor-critic. SIAM Journal on Optimization, 33(1):147–180, 2023.

Yifan Hu, Xin Chen, and Niao He. On the bias-variance-cost tradeoff of stochastic opti-
mization. In NeurIPS, 2021.

Minhui Huang, Kaiyi Ji, Shiqian Ma, and Lifeng Lai. Efficiently escaping saddle points in
bilevel optimization. JMLR, 2025.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In ICML, 2021.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Theoretical convergence of multi-step model-
agnostic meta-learning. JMLR, 2022.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to
escape saddle points efficiently. In ICML, 2017.

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes
saddle points faster than gradient descent. In COLT, 2018.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran
Yang. A near-optimal algorithm for stochastic bilevel optimization via double-momentum.
In NeurIPS, 2021.

Prashant Khanduri, Ioannis Tsaknakis, Yihua Zhang, Jia Liu, Sijia Liu, Jiawei Zhang, and
Mingyi Hong. Linearly constrained bilevel optimization: A smoothed implicit gradient
approach. In ICML, 2023.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

Guy Kornowski and Ohad Shamir. An algorithm with optimal dimension-dependence
for zero-order nonsmooth nonconvex stochastic optimization. arXiv preprint
arXiv:2307.04504, 2023.

Guy Kornowski, Swati Padmanabhan, Kai Wang, Zhe Zhang, and Suvrit Sra. First-order
methods for linearly constrained bilevel optimization. In NeurIPS, 2024.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert Nowak. A fully first-order
method for stochastic bilevel optimization. In ICML, 2023.

Jeongyeol Kwon, Dohyun Kwon, and Hanbaek Lyu. On the complexity of first-order meth-
ods in stochastic bilevel optimization. In ICML, 2024a.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. On penalty meth-
ods for nonconvex bilevel optimization and first-order stochastic approximation. In ICLR,
2024b.

52

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent
only converges to minimizers. In COLT, 2016.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. OOD-GNN: Out-of-distribution
generalized graph neural network. TKDE, 2022.

Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more
polylogarithmic factor in the in the O(ε−7/4) complexity. JMLR, 2023.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel
Urtasun, and Richard Zemel. Reviving and improving recurrent back-propagation. In
ICML, 2018.

Gui-Hua Lin, Mengwei Xu, and Jane J. Ye. On solving simple bilevel programs with a
nonconvex lower level program. Mathematical Programming, 144(1-2):277–305, 2014.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. BOME! bilevel optimization
made easy: A simple first-order approach. In NeurIPS, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture
search. In ICLR, 2019.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparam-
eters by implicit differentiation. In AISTATS, 2020.

Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In
ICML, 2021.

Matthew Mackay, Paul Vicol, Jonathan Lorraine, David Duvenaud, and Roger Grosse. Self-
tuning networks: Bilevel optimization of hyperparameters using structured best-response
functions. In ICML, 2018.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter
optimization through reversible learning. In ICML, 2015.

Konstantin Mishchenko, Slavomı́r Hanzely, and Peter Richtárik. Convergence of first-order
algorithms for meta-learning with moreau envelopes. arXiv preprint arXiv:2301.06806,
2023.

Yurii Nesterov. A method for solving the convex programming problem with convergence
rate O(1/k2). In Dokl akad nauk Sssr, volume 269, page 543, 1983.

Yurii Nesterov and Boris T. Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

Jǐŕı V. Outrata. On the numerical solution of a class of stackelberg problems. Zeitschrift
für Operations Research, 34:255–277, 1990.

53

Chen, Ma and Zhang

Rui Pan, Jipeng Zhang, Xingyuan Pan, Renjie Pi, Xiaoyu Wang, and Tong Zhang. Scalebio:
Scalable bilevel optimization for llm data reweighting. arXiv preprint arXiv:2406.19976,
2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imper-
ative style, high-performance deep learning library. In NeurIPS, 2019.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In ICML,
2016.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 2019.

Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, and Sergey Levine. Meta-learning
with implicit gradients. In NeurIPS, 2019.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
for robust deep learning. In ICML, 2018.

Alexander Robey, Fabian Latorre, George J. Pappas, Hamed Hassani, and Volkan
Cevher. Adversarial training should be cast as a non-zero-sum game. arXiv preprint
arXiv:2306.11035, 2023.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In AISTATS, 2019.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In ICML,
2023.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng.
Meta-weight-net: Learning an explicit mapping for sample weighting. In NeurIPS, 2019.

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and
Yunhao Tang. ES-MAML: Simple hessian-free meta learning. In ICLR, 2019.

Daouda Sow, Kaiyi Ji, and Yingbin Liang. On the convergence theory for hessian-free
bilevel algorithms. In NeurIPS, 2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

Davoud Ataee Tarzanagh, Mingchen Li, Christos Thrampoulidis, and Samet Oymak.
Fednest: Federated bilevel, minimax, and compositional optimization. In ICML, 2022.

Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I. Jordan. Stochas-
tic cubic regularization for fast nonconvex optimization. In NeurIPS, 2018.

Ioannis Tsaknakis, Prashant Khanduri, and Mingyi Hong. An implicit gradient-type method
for linearly constrained bilevel problems. In ICASSP, 2022.

54

https://github.com/tatsu-lab/stanford_alpaca

Near-Optimal Bilevel Optimization with Fully First-Order Oracles

Jiali Wang, He Chen, Rujun Jiang, Xudong Li, and Zihao Li. Fast algorithms for stackelberg
prediction game with least squares loss. In ICML, 2021.

Jiali Wang, Wen Huang, Rujun Jiang, Xudong Li, and Alex L. Wang. Solving stackel-
berg prediction game with least squares loss via spherically constrained least squares
reformulation. In ICML, 2022a.

Nuozhou Wang, Junyu Zhang, and Shuzhong Zhang. Efficient first order method for saddle
point problems with higher order smoothness. SIAM Journal on Optimization, 34(4):
3342–3370, 2024.

Xiaoxing Wang, Wenxuan Guo, Jianlin Su, Xiaokang Yang, and Junchi Yan. ZARTS: On
zero-order optimization for neural architecture search. In NeurIPS, 2022b.

Quan Xiao, Han Shen, Wotao Yin, and Tianyi Chen. Alternating projected SGD for
equality-constrained bilevel optimization. In AISTATS, 2023.

Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from
saddle points in almost linear time. In NeurIPS, 2018.

Haikuo Yang, Luo Luo, Chris Junchi Li, and Michael I. Jordan. Accelerating inexact
hypergradient descent for bilevel optimization. arXiv preprint arXiv:2307.00126, 2023.

Shuoguang Yang, Xuezhou Zhang, and Mengdi Wang. Decentralized gossip-based stochastic
bilevel optimization over communication networks. In NeurIPS, 2022.

Jane J. Ye and Daoli Zhu. Optimality conditions for bilevel programming problems. Opti-
mization, 33(1):9–27, 1995.

Jane J. Ye and Daoli Zhu. New necessary optimality conditions for bilevel programs by
combining the mpec and value function approaches. SIAM Journal on Optimization, 20
(4):1885–1905, 2010.

Lin Yong, Renjie Pi, Weizhong Zhang, Xiaobo Xia, Jiahui Gao, Xiao Zhou, Tongliang Liu,
and Bo Han. A holistic view of label noise transition matrix in deep learning and beyond.
In ICLR, 2022.

Chenyi Zhang and Tongyang Li. Escape saddle points by a simple gradient-descent based
algorithm. In NeurIPS, 2021.

Miao Zhang, Steven W Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad, and Reza
Haffari. iDARTS: Differentiable architecture search with stochastic implicit gradients. In
ICML, 2021.

Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Si-
jia Liu. Revisiting and advancing fast adversarial training through the lens of bi-level
optimization. In ICML, 2022.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for non-
convex optimization. JMLR, 2020.

55

Chen, Ma and Zhang

Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, and Jiashi Feng. Efficient meta
learning via minibatch proximal update. In NeurIPS, 2019.

Xiao Zhou, Yong Lin, Renjie Pi, Weizhong Zhang, Renzhe Xu, Peng Cui, and Tong Zhang.
Model agnostic sample reweighting for out-of-distribution learning. In ICML, 2022.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In ICLR,
2016.

56

	Introduction
	Related Works
	Preliminaries
	Finding First-Order Stationary Points
	Near-Optimal Rate in the Deterministic Case
	Extension to the Stochastic Case

	Finding Second-Order Stationary Points
	Perturbed F2BA
	Accelerated F2BA

	Experiments
	Tuning a Single Regularizer on Linear Regression
	Tuning 100,000 Regularizers on Logistic Regression
	Data Hyper-Cleaning for GPT-2

	Conclusions and Future Directions
	Notations for Tensors and Derivatives
	Lemmas for Finding First-Order Stationarity
	Lemmas for Finding Second-Order Stationarity
	Proofs of Finding First-Order Stationarity
	Removing the Large Batches in F2BSA
	Missing Proofs for F3BSA
	The SGD Subroutine

	Proofs of Finding Second-Order Stationarity
	Implement Our Algorithms in the Distributed Setting
	Discussions on Closely Related Works
	Discussions on the Weaker Notions in shen2023penalty
	Discussion on the Additional Assumptions in kwon2023fully

