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Abstract

The expected improvement (EI) is one of the most popular acquisition functions for Bayesian
optimization (BO) and has demonstrated good empirical performances in many applications
for the minimization of simple regret. However, under the evaluation metric of cumulative
regret, the performance of EI may not be competitive, and its existing theoretical regret
upper bound still has room for improvement. To adapt the EI for better performance under
cumulative regret, we introduce a novel quantity called the evaluation cost which is com-
pared against the acquisition function, and with this, develop the expected improvement-cost
(EIC) algorithm. In each iteration of EIC, a new point with the largest acquisition function
value is sampled, only if that value exceeds its evaluation cost. If none meets this criteria,
the current best point is resampled. This evaluation cost quantifies the potential downside
of sampling a point, which is important under the cumulative regret metric as the objective
function value in every iteration affects the performance measure. We establish in theory
a high-probability regret upper bound of EIC based on the maximum information gain,
which is tighter than the bound of existing EI-based algorithms. It is also comparable to
the regret bound of other popular BO algorithms such as Thompson sampling (GP-TS)
and upper confidence bound (GP-UCB). We further perform experiments to illustrate the
improvement of EIC over several popular BO algorithms.
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1. Introduction

Bayesian optimization (BO) is a sequential design framework for the global optimiza-
tion of black-box functions with the following key characteristics: Firstly, the (objective)
function has an unknown structure, with the input vectors residing in low- to moderate-
dimensional Euclidean space. Secondly, the evaluation of such functions is expensive, hence
it is impossible to search the entire domain in high precision before exhausting the budget.
Thirdly, the derivative information of the objective function is unavailable or impractical
to estimate, therefore classical gradient-based methods are not applicable. BO was initially
studied by Kushner (1964), Mǒckus (1975), Žilinskas (1975) and Mǒckus et al. (1978), and
later popularized by the work of Jones et al. (1998). Recently it has gained substantial
attention in a large number of important areas such as engineering systems optimization
and hyper-parameter tuning for machine learning algorithms (Torun et al., 2018; Kirschner
et al., 2019; Letham et al., 2019; Sim et al., 2021).

Within the BO framework, the evaluated points are sequentially selected by maximizing
an acquisition function, whose calculation requires a surrogate function to model the ob-
jective function using the sequentially collected points and their (either noisy or noise-free)
observations. The most commonly used surrogate functions are the Gaussian processes
(GPs). A GP is specified a priori by the mean function and the covariance kernel. Given
a set of training data, the posterior of a GP remains a GP, with closed-form expressions
for the posterior distribution at any point. This nice property makes the GPs become a
powerful tool for statistical modelling. Refer to Williams and Rasmussen (2006), Osborne
et al. (2009) and Malkomes et al. (2016) for a more detailed introduction to GPs.

BO has been extensively applied in numerous fields, and the goal of many of them is
to find the best final solution, i.e., to find the point that maximizes the objective function.
Under this goal, points with good chances to achieve the maximum function value are
evaluated sequentially, and after the budget is exhausted, the evaluated point with the
largest observed function value is usually reported as the final solution. Application fields
with this goal include engineering system optimization (Jones et al., 1998; Torun et al.,
2018), materials science design (Frazier and Wang, 2016; Packwood, 2017; Fukazawa et al.,
2019), and pharmaceutical product development (Ban et al., 2017; Sano et al., 2020). This
goal in BO is typically known as the minimization of the simple regret, and there has been
several theoretical results on its properties in the literature (Grünewälder et al., 2010; Bull,
2011; Ryzhov, 2016; Wüthrich et al., 2021).

To minimize the simple regret of BO, a number of acquisition functions have been
proposed. Among them, one of the most widely used acquisition functions is expected im-
provement (EI). EI was firstly proposed by Mǒckus (1975) under the noise-free BO setting,
and then received further attention due to the work of Jones et al. (1998) who successfully
incorporated GPs into the calculation of EI. As a conceptually intuitive method, EI has
demonstrated impressive empirical performances in various applications. In every iteration,
EI calculates the expected gain (over the best observed function value so far) from every
point in the domain based on the posterior mean and variance of the GP model, and eval-
uates the point that maximizes this expected gain. Besides EI, other popular acquisition
functions for simple regret minimization include knowledge gradient which evaluates the
point that maximizes the increment of posterior mean function (Frazier et al., 2009; Wu
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and Frazier, 2016), and entropy search which selects the point that is most informative
about the location of the global optimum (Hennig and Schuler, 2012; Hernández-Lobato
et al., 2014; Wang and Jegelka, 2017).

Despite the popularity of BO methods based on simple regret minimization, many com-
mon applications of BO are also concerned with the overall performance of BO throughout
the entire experiment, instead of only finding the best final solution (i.e., minimizing the
simple regret). One representative example of such applications is the recommendation
system (Koren et al., 2009; Kawale et al., 2015; Galuzzi et al., 2020), where algorithms
(such as matrix-factorization) are deployed to recommend items (e.g., news, movies and
songs) to customers in order to increase their stickiness or likelihood to make a purchase.
Like many machine learning algorithms, these recommendation algorithms require a hyper-
parameter tuning process in order to enhance their effectiveness, for which BO is usually
a prominent choice. The performance of recommendation algorithms, which is summarized
as a numerical score to quantify the customers’ utility within a particular time period, is
evaluated on a regular time basis. As the experience of every customer over time matters,
it is therefore inappropriate to only aim at finding a good recommendation algorithm for
final future customers as this may deteriorate the utility of current customers. Hence, min-
imizing the simple regret is not a suitable objective in this case. Instead, companies usually
aim to boost the total utility scores of all customers throughout the entire hyper-parameter
tuning process. Another example of such applications is the development of combination
therapies through clinical trials, where BO is often used to sequentially choose combinations
of therapies for a series of patients, in order to improve the treatment efficacy (Shahriari
et al., 2016; Kharkovskii et al., 2020; Takahashi and Suzuki, 2021). In these applications,
the focus is on the overall efficacy of combination therapies for all patients, and not only
on the final patient.

This objective of maximizing the overall performance throughout the entire experiment
originated from the multi-armed bandit (MAB) literature, in which it is known as cumula-
tive regret minimization (Lai and Robbins, 1985; Agrawal, 2019; Lattimore and Szepesvári,
2020). Popular MAB approaches for this objective include upper confidence bound (UCB,
Lai and Robbins, 1985; Auer et al., 2002; Cappé et al., 2013; Lattimore, 2018) and Thomp-
son sampling (TS, Thompson, 1933; Agrawal and Goyal, 2012; Korda et al., 2013), which
are based on the frequentist and Bayesian perspectives, respectively. Both approaches have
been extended into the BO framework to derive the GP-UCB and GP-TS acquisition func-
tions, and have been shown to perform well analytically under the cumulative regret setting
(Srinivas et al., 2010; Chowdhury and Gopalan, 2017; Kandasamy et al., 2018; Berkenkamp
et al., 2019; Vakili et al., 2021). The acquisition function of EI has also been analyzed
analytically under the cumulative regret evaluation metric (Wang and De Freitas, 2014;
Nguyen et al., 2017), and its existing performance bound is shown to be not as tight com-
pared to those of GP-UCB and GP-TS (Chowdhury and Gopalan, 2017). This theoretical
gap in the cumulative regret of EI is also reflected in practice, which we illustrate using a
numerical example in Figure 1. Here, we examine the performances of EI and GP-UCB
on the commonly used Ackley function, which is a two-dimensional test function equipped
with many local extrema (refer to Table 1 for more details). The figure shows that GP-UCB
(green curve), which is designed for the cumulative regret setting, incurs smaller cumulative
regret than EI (orange curve).
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Figure 1: Cumulative regret of common BO methods and our proposed EIC algorithm on
the Ackley test function. The solid line represents the cumulative regret (averaged over 100
independent runs) and the shaded area is the corresponding 95% confidence region.

In view of the above-mentioned theoretical and empirical gaps of the EI in cumulative
regret minimization, the following question arises: can EI be adapted to achieve a tight upper
bound on its cumulative regret which can then enable it to also perform well in applications
focused on maximizing the overall performance? This is in fact an important open problem
in BO because of the impressive real-world performances and wide adoption of EI. To
this end, we adapt the traditional EI algorithm to suit the objective of cumulative regret
minimization, and propose the expected improvement-cost (EIC) algorithm (Section 3). We
plot in Figure 1 the cumulative regret of EIC (blue curve), which shows that our proposed
EIC achieving a smaller cumulative regret than traditional EI and performing comparably
with GP-UCB.

The contributions of this paper are as follows. Firstly, we propose the EIC algorithm
(Section 3) for cumulative regret minimization. EIC is designed to consciously balance the
evaluation gains and losses in every iteration, so that a smaller cumulative regret is achieved.
The algorithm starts with a systematic and budget-dependent initial experimental design,
which ensures that the global model fitting is reasonably good. After the initialization,
to choose a point to evaluate, EIC firstly calculates the evaluation cost of every point in
the domain based on the expected loss (and the number of remaining iterations). This
serves as a criterion to decide the worthiness of a point for evaluation, i.e., a point is worth
evaluating only if its expected gain (i.e., the EI acquisition function value) is larger than its
evaluation cost. As a result, in every iteration, we sample the point that has the largest EI
acquisition function value, provided that it is not lower than its evaluation cost. If no point
in the domain has an acquisition function value not lower than its evaluation cost, then the
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previous evaluated point with the best observed function value is sampled. Secondly, we
analyze the cumulative regret of our EIC algorithm and establish a high-probability finite-
time regret upper bound. Importantly, we show that EIC can achieve an upper bound of
O
(√
NγN (logN)1/2

)
under some mild regularity conditions, where N is the total number

of iterations and γN is the maximum information gain (see Section 3.2). This regret upper
bound is tighter than the bound of existing EI-based algorithms in the literature (Wang
and De Freitas, 2014; Nguyen et al., 2017).

The layout of the paper is as follows. In Section 2, we present some background in-
formation about BO and the GP model. We also give a brief review of the EI acquisition
function and its related theoretical results. In Section 3, we describe our proposed EIC
algorithm and explain some interesting insights into the development of EIC, including why
the evaluation cost is applied. In Section 4, we establish a cumulative regret upper bound
for EIC. In Section 5 we perform several numerical experiments to demonstrate the practical
effectiveness of our EIC algorithm. Finally, Section 6 concludes the paper.

2. Problem Statement and Background

Let AT denote the transpose of a vector or matrix A and let In denote the identity
matrix of size n. Let diag(a1, a2, . . . , an) denote the diagonal matrix of size n with the

(i, i) entry equal to ai. Let ‖x‖ :=
√
x2

1 + · · ·+ x2
d denote the Euclidean norm of vector

x = (x1, . . . , xd)
T . Let a+ denote max(0, a) and let φ(·) and Φ(·) denote the density and cu-

mulative distribution functions of standard normal distribution, respectively. Let Nk(µ,Σ)
denote the k-dimensional multivariate normal distribution with mean vector µ and covari-
ance matrix Σ. Let an ∼ bn if limn→∞(an/bn) = 1, an = O(bn) if lim supn→∞ |an/bn| <∞
and an = Ω(bn) if lim infn→∞ |an/bn| > 0.

BO aims to sequentially maximize an unknown objective function f : D → R, where
D = [0, 1]d ⊆ Rd. In each iteration n, BO selects a point xn to evaluate, and receives a
noisy observation yn = f(xn) + εn. As discussed in Section 1, we consider the objective of
minimizing the cumulative regret after N total iterations:

RN =
N∑
n=1

(f(x∗)− f(xn)), (1)

where x∗ = arg maxx∈D f(x) denotes the location where f attains the global maximum.
In order to choose the sequential points xn’s intelligently, BO usually models the objective
function using a GP model. We briefly introduce GPs in Section 2.1, and refer the readers to
Williams and Rasmussen (2006) and Kanagawa et al. (2018) for more complete introduction
to GPs.

2.1 Gaussian Processes

The objective function in BO is typically modelled as a stationary Gaussian process. We
say a random function f follows a time-varying prior distribution GP(µ, ω2

nk) with mean
function µ : D → R, covariance kernel k : D ×D → R and signal variance ω2

n if and only if
the following condition holds: For every finite set of points X = (x1, . . . ,xn)T , the values
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(
f(x1), . . . , f(xn)

)T ∼ Nn(µX , ω
2
nKXX), which is an n-dimensional multivariate normal

distribution with

µX :=
(
µ(x1), . . . , µ(xn)

)T
, and (2)

KXX :=


k(x1,x1) k(x1,x2) · · · k(x1,xn)
k(x2,x1) k(x2,x2) · · · k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) · · · k(xn,xn)

 . (3)

One useful result of the GP model is that the posterior distribution of f , conditioned on

the sampled data, is still a GP. Let X = (x1, . . . ,xn)T and Y = (y1, . . . , yn)T denote
the sampled points and the corresponding noisy observations up to iteration n. At each
iteration, the noise terms are assumed bo be independent and identically distributed (i.i.d)

normal random variables ε1, . . . , εn
i.i.d∼ N(0, λ2ω2

n). Consequently, we have

f |(X,Y ) ∼ GP(µn, ω
2
nkn), (4)

with µn : D → R and kn : D ×D → R given by

µn(x) = kxX(KXX + λ2In)−1(Yn − µX), (5)

kn(x,x′) = k(x,x′)− kxX(KXX + λ2In)−1kXx′ , (6)

where kxX = kTXx =
(
k(x1,x), . . . , k(xn,x)

)
. Note that ω2

n and λ2 are algorithm-specific
parameters, which could possibly depend on n. Based on (4), it can be deduced that the
predictive distribution at any point follows a Gaussian distribution. That is, for any x ∈ D,

f(x)|(X,Y ) ∼ N(µn(x), ω2
nσ

2
n(x)), with σ2

n(x) = kn(x,x). (7)

The mean function and the covariance kernel serve as the prior for the GP model, and
they reflect the initial belief about f . Without loss of generality, the mean function µ(x) is
usually set to be zero, indicating there is no prior knowledge on the global maxima location,
whereas the choice of covariance kernel is more varied. In this paper, we consider positive
definite covariance kernel functions that are isotropic and bounded, which is a quite general
setting. Typical examples that satisfy this condition include the squared exponential (SE)
and the Matérn kernel, which are perhaps the most popular covariance kernels in practice
for Bayesian optimization (Snoek et al., 2012; Shahriari et al., 2016; Teckentrup, 2020). Let
h := (h1, . . . , hd)

T with hi > 0,∀1 ≤ i ≤ d be the length-scale parameter. The Euclidean
distance between x and x′, adjusted by the length-scale parameter h, is given by

‖x− x′‖h :=

√(x1 − x′1
h1

)2
+ · · ·+

(xd − x′d
hd

)2
.

Define the SE covariance kernel as

kSE(x,x′) = exp

(
−
‖x− x′‖2h

2

)
, (8)
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and the Matérn kernel

kMatérn(x,x′) =
21−ν

Γ(ν)

(√
2ν‖x− x′‖h

)ν
Bν

(√
2ν‖x− x′‖h

)
, (9)

where ν > 0 is the smoothness parameter, and Bν is the modified Bessel function. The
length-scale h and smoothness ν are the hyper-parameters of the GP model. Standard
methods can be applied to estimate them, such as the maximum likelihood method by
Santner et al. (2018) and the maximum a posteriori method by Ng and Yin (2012).

2.2 Expected Improvement

EI is one of the most popular acquisition functions under BO framework. We review
here EI as proposed by Mǒckus (1975) and Jones et al. (1998) when the observations are
evaluated without noise, i.e., ym = f(xm). The noisy version will be discussed in more detail
in Section 3. Let En[·] denote the expectation with respect to the posterior distribution of
f(x) described in (7). After n iteration, the acquisition function of EI is defined as

αEIn (x) := En([f(x)− f(x∗n)]+), (10)

where f(x∗n) = max1≤m≤n f(xm) is the current best observation value. This acquisition
function (10) quantifies the expected gain of sampling x over the current best observation
value, and a point that maximizes (10) will be sampled in the next iteration, i.e.,

xn+1 = arg max
x∈D

αEIn (x).

EI has been repeatedly shown to perform competitively under the simple regret evaluation
metric. Moreover, it is computationally convenient because the acquisition function (10)
has a closed-form expression.

2.3 Related Works

In the theoretical analyses of BO algorithms, the objective function is usually assumed
to be fixed and belongs to the reproducing kernel Hilbert space (RKHS) associated with
the covariance kernel in the GP model. Based on the different focus or interest in the ap-
plication, the analyses in literature can be classified into two categories: one which focuses
on the analysis of the asymptotic properties of the obtained optimum or optimal solution
(i.e., the simple regret), and the other which focuses on analysing the cumulative regret.
Intuitively, the analysis of asymptotic properties (i.e., simple regret) can be used to assess
if the algorithm converges and how fast it converges to the true optimum or optimal solu-
tion, whereas the cumulative regret analysis informs on the performance of the algorithm
throughout the entire experiment.

The theoretical analyses of the EI started from studying its asymptotic properties (i.e.,
simple regret). Under the noise-free BO setting, Vazquez and Bect (2010) showed that when
the covariance kernel function is fixed and has finite smoothness, the EI converges to the
global maxima almost surely for any objective function. Subsequently, Bull (2011) proved
that for any d-dimensional objective function, the convergence rate of the EI is of the order
O(N−(ν∧1)/d) with ν > 0 being the smoothness parameter of the covariance kernel. The
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author also showed that a combination of EI and the ε-greedy method converges at the near-
optimal rate of O(N−ν/d). Under the noisy setting, Ryzhov (2016) showed that a variant
of EI can achieve the same convergence rate as the optimal computing budget allocation
(OCBA) algorithm, which is an algorithm that has been shown to be asymptotically near-
optimal.

Srinivas et al. (2010) did the first cumulative regret analysis on BO algorithms. They
showed that when the objective function belongs to the RKHS associated with certain
covariance kernel, the acquisition function of GP-UCB can achieve a finite-time regret upper

bound of RN = O
(
γN
√
N(logN)3/2

)
with high probability. The term γN is the maximum

information gain about the objective function f that can be obtained from any set of N
sampled points. Its value is algorithm-independent and closely related to the effective
dimension associated with the kernel. The regret bound of GP-UCB was later improved

by Chowdhury and Gopalan (2017) to RN = O
(
γN
√
N
)

. In addition, they proposed

the acquisition function of GP-TS and showed that it can attain a regret upper bound of

RN = O
(
γN
√
N(logN)1/2

)
. As for the EI acquisition function under the noisy BO setting,

Wang and De Freitas (2014) replaced f(x∗n) in (10) with the maximum of the posterior

mean maxx∈D µn(x), and showed that their algorithm achieves RN = O
(
γ

3/2
N

√
N(logN)

)
with high probability. Nguyen et al. (2017) further considered replacing f(x∗n) with the
current best observation max1≤m≤n ym, and reduced the regret upper bound to RN =

O
(
γN
√
N(logN)3/2

)
. However, their analysis depends on a pre-defined constant κ > 0

which is set to be small for good performances of EI, yet the constant term in their regret
upper bound will explode quickly as κ→ 0. The recent work of Tran-The et al. (2022) also
performed theoretical analyses of EI, but they considered a regret definition that is different
from our paper and these previous works.

Scarlett et al. (2017) and its update Scarlett et al. (2018) derived a universal regret
lower bound that applies to all algorithms under the noisy BO setting. The authors
showed that for the SE and Matérn kernel respectively, an expected regret of E(RN ) =

Ω
(√

N(logN)d/4
)

and E(RN ) = Ω
(
N

ν+d
2ν+d

)
is unavoidable. This strong result motivates

us to examine whether the current regret upper bounds of EI algorithms are tight. As
shown from these previous results in the literature, for the EI, there exists a gap between
the regret lower bound and the current regret upper bounds. In order to reduce this gap, we
introduce a novel quantity called the evaluation cost, and compare it with the EI acquisi-
tion function. At each iteration, a new point will be sampled only if its acquisition function
exceeds its evaluation cost. We name this new algorithm the expected improvement-cost
(EIC) algorithm. Moreover, we adopt an analysis framework from the BO literature and

establish in Section 4 a finite-time regret upper bound of EIC as O
(√

NγN (logN)1/2
)

,

which is tighter than the regret upper bound of Wang and De Freitas (2014) and Nguyen
et al. (2017).
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3. The Expected Improvement-Cost (EIC) algorithm

In this section we describe in detail our expected improvement-cost (EIC) algorithm.
We first introduce in Section 3.1 an experiment scheme for choosing the initial design points.
This scheme is to ensure that the initial GP model fit is good so that the posterior variance
is not too large uniformly over the entire domain. Next, we discuss in Section 3.2 how
the incumbent function of EI should be selected in the setting of noisy BO, i.e., when the
observations are corrupted by homogenous noises. The EI has a built-in mechanism to
trade-off between sampling points with high expected value (posterior mean) versus high
uncertainty (posterior variance), which is a desirable property under the cumulative regret
objective. However, the EI acquisition function, as it was originally designed, only quantifies
the potential upside of evaluating a point and overlooks the potential downside. Under the
objective of cumulative regret, it is important to also account for the potential downside of
evaluating a point, because the value of the objective function in every iteration contributes
to the performance measure (i.e., the cumulative regret). Hence, this requires the algorithm
to be more conservative than under the simple regret objective. To this end, in Section 3.3,
we propose to quantify this potential downside using an evaluation cost function, which
helps determine whether our EIC algorithm should evaluate existing good points or explore
new points.

3.1 Initial Experiment Scheme

In the theoretical framework, the role of the initial experiment scheme is less significant,
provided that the total number of initial design points does not substantially contribute
to the regret. However, from a practical perspective, a well-structured initial experiment
scheme is crucial for the success of Bayesian Optimization. As highlighted in Bull (2011),
inappropriate selection of the initial design points may cause the algorithm to fail completely.
Therefore, when practitioners use our algorithm, it is essential to establish a proper initial
design. In this paper, we adopt an initial experimental design that evenly spaces design
points across the domain D = [0, 1]d. Define the collection of the initial design points BM ,
indexed by M ∈ N, as

BM =
{
x ∈ D : xi =

2ki − 1

2M
for ki ∈ {1, . . . ,M}, i = 1, . . . , d

}
. (11)

Following this scheme, given a user-specified parameter M ∈ N, the interval [0, 1] along each
dimension is divided into M equal-sized segments. As a result, the domain D is partitioned
into Md hyper-cubes, and the initial design points in BM are located at the centre of these
hyper-cubes. According to (11), the corresponding total number of initial design points is
n0 = Md.

The reason for adopting such an initial experiment scheme is to control the overall
posterior variance of the GP model by the following: For any point x, it can be shown
that σ2

n(x) increases with the Euclidean distance min1≤j≤n ‖x−xj‖. That is, the posterior
variance has a positive correlation with the Euclidean distance to its nearest sampled point.
With the initial experiment scheme (11), it can be seen that its nearest sampled point is
the centre of hyper-cube to which it belongs. As each hyper-cube has a diagonal length
of
√
dM−1, it is guaranteed that the distance is not more than 1

2

√
dM−1 for all points.
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Therefore after our initial experiment design scheme, the posterior variance of the GP model
is uniformly controlled by M , which is the number of segments along each dimension.

The next issue is to determine the value of M . Setting M too large will make the
algorithm focus too much on global modelling, leaving little budget for optimization; On
the other hand, setting M too small will result in a bad global model which can substantially
diminish the sample efficiency. Hence, we need to seek a balance in choosing M so that
the algorithm will converge fast enough without utilizing too much budget for the initial
design. We suggest setting M = cN1/2d for some constant c > 0. This choice ensures that

n0 = cdN1/2. (12)

3.2 Acquisition Function

The general form of EI acquisition function, after n observations has been evaluated is

αEIn (x) = En([f(x)− ξn]+) = (µn(x)− ξn)Φ
(µn(x)−ξn
ωnσn(x)

)
+ ωnσn(x)φ

(µn(x)−ξn
ωnσn(x)

)
, (13)

where ξn is the incumbent value and ω2
n is the signal variance parameter. In the noise-free

BO setting, the incumbent ξn is usually selected as the current best observed function value:
ξn = max1≤i≤n f(xi). When the observations are corrupted by homogenous noises, the
noise-free function values are not observable, and a natural replacement is the current best
(noisy) observation: ξn = max1≤i≤n yi. However, this can make the acquisition function very
unstable due to the observation noises. To address this issue, Huang et al. (2006) proposed
to multiply (13) by a factor of σn(x)/

√
σ2
n(x) + λ2, so that the acquisition function is

discounted according to the parameter λ2. Another possible remedy is to rely on the GP
model, for example Brochu et al. (2010) and Wang and De Freitas (2014) suggested to
use the best posterior mean maxx∈D µn(x) as the incumbent, and Picheny et al. (2013)
recommended a quantile-based incumbent max1≤i≤n µn(xi) − Φ−1(β)σn(xi) with quantile
level parameter β = 0.5 or 0.9. In our EIC algorithm, we adopt the approach of Brochu
et al. (2010) and Wang and De Freitas (2014), but adapt it by considering the current best
posterior mean at only the observed locations as the incumbent. Specifically, we define the
incumbent value after n observations as:

ξn = max
1≤i≤n

µn(xi). (14)

This choice of incumbent is intuitive and allows us to derive our theoretical guarantee.
Intuitively, if the GP model fitting is good, then ξn will be a good estimation of the current
best function value with low variability. Moreover, unlike the incumbent used in Wang and
De Freitas (2014), (14) does not require optimizing the GP posterior mean over the entire
domain and hence does not introduce excessive computational cost to the algorithm and
uncertainty.

The implementation of BO algorithms and their regret bounds often depends on the
maximal information gain γn between n observations and the underlying GP model, which
is defined as

γn := sup
An⊂D

I(YAn ;FAn), (15)

10
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where An = (x1, . . . ,xn)T represents any set of points in D. The term I(YAn ;FAn) refers
to the mutual information between FAn = (f(x1), . . . , f(xn))T and YAn = (y1, . . . , yn)T

with each yi = f(xi) + εi. As discussed in Section 2.1, FAn follows a multivariate normal

distribution, and the noise terms are modelled as ε1, . . . , εn
i.i.d∼ N(0, λ2ω2

n), this allows the
mutual information to be expressed in closed form as

I(YAn ;FAn) = 1
2 log det(In + λ−2KAnAn). (16)

There are two remarks regrading the maximal information gain. First, from definition (15)
and equation (16), it is evident that the mutual information, and consequently the γn,
does not depend on ωn. Second, it is important to note that identifying the set An that
maximizes the information gain is an NP-hard problem. However, γn can be upper bounded
by a known quantity. For instance, as demonstrated in Srinivas et al. (2010), if the set A′n
is generated using the greedy algorithm, then γn ≤ (1− 1/e)−1I(YA′n ;FA′n).

The signal variance parameter ω2
n in the GP model is used to balance the exploration

and exploitation of the EI algorithm. When ωn is large, EI tends to explore regions which
have less points, whereas a small ωn makes EI prefer exploiting regions which are predicted
to have good points based on the observations so far. The signal variance parameter has
been studied in many previous literature (Agrawal and Goyal, 2012; Wang and De Freitas,
2014; Chowdhury and Gopalan, 2017; Tran-The et al., 2022). Inspired by Theorem 1, we
found that setting

ωn = c0

√
γn + 1 + log(1/δ) (17)

with user-specified constants c0 > 0 and 0 < δ < 1 guarantees the convergence of EIC.

3.3 Evaluation Cost and the EIC Algorithm

Under the traditional EI framework, a point with the largest acquisition function value
(13) will be sampled in each iteration. The acquisition function (13) quantifies the expected
gain over ξn if the point x is sampled in the next iteration, which is the potential upside of
evaluating this point. However, this traditional strategy does not take into account the po-
tential downside of sampling x, which is important under cumulative regret considerations.
This is because the function value in every iteration contributes to the cumulative regret
performance measure. As a result, if the algorithm samples a point with a significantly
inferior function value (i.e., with substantial downside), the cumulative regret will increase
significantly. In this regard, in order to achieve a smaller cumulative regret, our EIC takes
an additional step of comparing the acquisition function value against an evaluation cost,
which allows us to better balance between the evaluation gains and losses. Specifically, we
define the evaluation cost after n observations as:

Ln(x) := En([ξn − f(x)]+)/(N − n) (18)

=
[
(ξn − µn(x))Φ

( ξn−µn(x)
ωnσn(x)

)
+ ωnσn(x)φ

( ξn−µn(x)
ωnσn(x)

)]
/(N − n).

The numerator here quantifies the expected loss of sampling x if its function value is less
than the incumbent ξn, and the denominator is the number of remaining iterations. We
will first describe our complete EIC algorithm in the next paragraph, following which we
will explain the intuitions behind the evaluation cost (18).

11
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Algorithm 1 Expected improvement-cost (EIC) algorithm

Require: N , GP(µ, k), n0, ξn, ω2
n.

Sample n0 initial design points as described in (11). Each point is sampled with one
replication.
for n = n0, . . . , N − 1 do

Update the GP posterior model GP(µn, kn) using the history of observations.
if ∃x ∈ D : αEIn (x) ≥ Ln(x) then

Let Bn = {x ∈ D : αEIn (x) ≥ Ln(x)}.
Select the point xn+1 = arg maxx:x∈Bn

αEIn (x).
else

Select the point xn+1 = arg max1≤i≤n µn(xi).
end if
Evaluate the selected point xn+1 with one replication and observe yn+1.
Add the newly collected (xn+1, yn+1) to the history of observations.

end for

Algorithm 1 presents the pseudo-code of our EIC algorithm. It has 5 input parameters:
the total budget N , the prior GP model, the total number of initial design points n0

and the incumbent function ξn and the signal variance parameter ω2
n. Note that ωn is

a pre-determined whole sequence, whereas ξn is a sequence of functions that depend on
the sampled data. EIC starts with the initial experiment scheme (Section 3.1), where
a total number of n0 different points are sampled. These points are pre-determined by
the initial design scheme (11) and each point is evaluated with one replication. After the
initial experiment, the subsequent points are sampled based on the acquisition function
and evaluation cost. In each iteration n, if there exists at least one point x which satisfies
the condition of αEIn (x) ≥ Ln(x) (i.e., its acquisition function value is not smaller than its
evaluation cost), then we select the point with the largest acquisition function value among
all points that satisfy this condition, and evaluate it with one replication. If no point satisfies
this condition, we select the previously sampled point with the largest posterior mean and
add one more replication run to that point.

Intuitions behind the Evaluation Cost. We use the case where the observations are
noise-free to better illustrate the intuitions. In the noise-free case, the incumbent ξn =
max1≤m≤n f(xm) is the current best function value. In iteration n, suppose we decide not
to evaluate any new point but instead continue sampling at the current best point until
the budget is exhausted, then the cumulative regret of the remaining iterations will be
(N − n)(f(x∗) − ξn). On the other hand, we can choose to sample a new point xn+1 in
the next iteration, and then stop evaluating any new point afterwards. For this newly
sampled point xn+1, its function value f(xn+1) may be larger or smaller than ξn. In the
first case where f(xn+1) ≥ ξn, an improvement is achieved and its expected value is given
as En([f(xn+1) − ξn]+). In this case, we can choose to keep sampling at xn+1 instead of
arg max1≤m≤n f(xm) in all the (N − n) remaining iterations and this will provide a higher
reward than with the continued sampling at ξn. Hence, the total expected reduction of the

12
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cumulative regret (i.e., total expected gain) in all (N − n) remaining iterations will be

(N − n)En([f(xn+1)− ξn]+) = (N − n)αEIn (xn+1).

In the second case where f(xn+1) < ξn, a loss will be incurred and the expected value will
be En([ξn − f(xn+1)]+). Unlike the improvement which can be exploited for all (N − n)
remaining iterations as mentioned above, we only suffer this loss once (in iteration n + 1)
since we can switch back to the strategy of sampling arg max1≤m≤n f(xm) for all future
iterations to avoid further this loss. This provides us a balance, and we see that xn+1

is therefore worth sampling if and only if its total expected gain is larger than its total
expected loss:

(N − n)αEIn (xn+1) ≥ En([ξn − f(xn+1)]+),

or equivalently: αEIn (xn+1) ≥ Ln(xn+1).
Another interesting insight is that the evaluation cost Ln(xn+1) (18) increases with the

iteration number n. Therefore, our EIC algorithm is endowed with a built-in mechanism
which allows it to more aggressively explore new points at the beginning and then gradually
become more exploitative as the budget gets exhausted. Overall, our EIC algorithm is more
conservative (in sampling new points) than the traditional EI as it evaluates the potential
gains and losses by comparing the acquisition function with the evaluation costs. Further
note that the traditional EI can be regarded as a special case of EIC algorithm with zero
evaluation cost.

4. Regret Analysis of EIC

In this section we perform regret analysis of our proposed EIC algorithm. We adopt the
frequentist view by assuming that f is an arbitrary function from the reproducing kernel
Hilbert space (RKHS) associated with the covariance kernel in the GP model. In Section 4.1,
we present a brief introduction to RKHS and its connections with GP models. A complete
overview of RKHS can be found in Berlinet and Thomas-Agnan (2011). In Section 4.2, we
establish a finite-time cumulative regret upper bound for EIC.

4.1 Reproducing Kernel Hilbert Space

Let X be a non-empty set and k(·, ·) : X × X → R be a symmetric positive definite
kernel. Common examples of symmetric positive definite kernels are the SE and Matérn
covariance kernel. A Hilbert space Hk of functions on X equipped with an inner-product
〈·, ·〉Hk

is called a reproducing kernel Hilbert space (RKHS) with reproducing kernel k if the
following conditions are satisfied:

1. For all x ∈ X , we have k(·,x) ∈ Hk;

2. For all x ∈ X and all f ∈ Hk, we have

f(x) = 〈f, k(·,x)〉Hk
. (19)

Based on the definition of RKHS, it can be deduced that for all x,x′ ∈ X , the kernel
function k(x,x′) can be written as:

k(x,x′) = 〈k(·,x), k(·,x′)〉Hk
. (20)
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(20) suggests that every RKHS defines a reproducing kernel function k that is both
symmetric and positive definite. The other direction also holds as shown by the Moore-
Aronszajn theorem (Aronszajn, 1950), which states that given a positive definite kernel k,
we can construct a unique RKHS of real-valued functions with k as its reproducing kernel
function. That is, RKHSs and positive definite kernels are one-to-one: for every kernel k,
there exits a unique associated RKHS, and vice versa. When performing regret analysis
under the frequentist view, it is natural to assume that the objective functions f belongs
to the RKHS associated with the covariance kernel k specified in the GP model.

4.2 Regret Upper Bound of EIC

4.2.1 Regret Upper Bound

In order to derive the regret bound of EIC (Theorem 1), we make the following assump-
tions. These are standard assumptions commonly used in the analysis of BO algorithms
(Srinivas et al., 2010; Chowdhury and Gopalan, 2017).

(A1) The objective function f belongs to the RKHS Hk associated with the positive semi-
definite kernel function k(·, ·). Moreover, k is isotropic (that is k(x,x′) depends only on
‖x− x′‖ and decreases with ‖x− x′‖) and k(x,x) ≤ 1,∀x ∈ D.

(A2) The RKHS norm of the objective function ‖f‖Hk
:=
√
〈f, f〉Hk

satisfies

‖f‖Hk
≤ B for some B > 0.

(A3) The noise sequence {εn}n≥1 is conditionally R-sub-Gaussian for a fixed constant R > 0:

∀n ≥ 0, ∀λ ∈ R, E[eλεn |Fn−1] ≤ λ2R2

2 ,

where Fn−1 is the σ-algebra generated by random variables {x1, . . . ,xn−1, ε1, . . . , εn−1,xn}.
Note that these assumptions do not directly reflect the design of our EIC algorithm:

Although the objective function f is fixed, unknown, and a member of Hk, and the noise
random variables εn are conditionally R-sub-Gaussian martingale difference sequence, we
still run EIC algorithm under the Gaussian process model as described in Section 2.1. In
general, this represents a mis-specified prior and noise model, which is known as the agnostic
setting in Srinivas et al. (2010).

Theorem 1 Assume (A1)–(A3). Let 0 < δ < 1. With probability at least 1 − δ, running
EIC algorithm under a GP model with prior mean function µ(x) ≡ 0, and with parameters
(12), (14), (17), λ2 = 1 + 2/N achieves

RN ≤ cdB
√

2N + C ′
√

2B + C ′(
√

2B + 2βN + ωN )(logN + 1)

+2λ
[(
C ′ +

√
2 logN

)
ωN + (2C ′ + 1)βN

]√
γNN,

where βN = B+R
√

2(γN + 1 + log(1/δ)), ωN = c0

√
γN + 1 + log(1/δ) and C ′ is a univer-

sal constant that depends only on B,R and c0. Hence

RN = O(
√
NγN (logN)1/2). (21)
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Remark 1 Under the noisy BO setting, Wang and De Freitas (2014) proved that the EI al-

gorithm can achieve a regret upper bound of RN = O
(√
Nγ

3/2
N (logN)

)
. Thereafter, Nguyen

et al. (2017) derived an improved regret upper bound of EI. However, to the best of our knowl-
edge, there is an issue in their proofs as highlighted in Tran-The et al. (2022). Compared
with Wang and De Freitas (2014), the regret upper bound in Theorem 1 is much tighter,
which improves upon traditional EI by a factor of

√
γN logN . This significant improvement

is achievable due to the evaluation cost feature in our EIC algorithm.

High-probability regret upper bounds which hold for every finite budget N have been
established for a number of BO algorithms, such as GP-UCB and GP-TS. Under the
frequentist setting, the tightest regret upper bound for vanilla GP-UCB and GP-TS are
RN = O

(√
NγN

)
and RN = O

(√
NγN (logN)1/2

)
respectively as shown by Chowdhury and

Gopalan (2017). To the best of our knowledge, our Theorem 1 is the first regret bound for
EI-based algorithms which matches the regret bound of GP-UCB and GP-TS.

Vakili et al. (2021) provided general upper bounds of the maximum information gain,
based on the decay rate of the eigenvalues of the covariance kernel function. Using their
results for the SE and Matérn kernels, we can derive the following corollary.

Corollary 1 Let 0 < δ < 1. With probability at least 1 − δ, the regret of EIC algorithm
satisfies

RN = O
(√

N(logN)d+
3
2

)
for the SE kernel,

RN = O
(
N

2ν+3d
4ν+2d (logN)

6ν+d
4ν+2d

)
for the Matérn kernel.

Comparing with Scarlett et al. (2018), the regret upper bound of EIC for the SE covariance
kernel is tight up to logarithmic factors.

4.2.2 Proof of Theorem 1

We preface the proof of Theorem 1 with Lemmas 1–7. These lemmas are proved in
the appendix. The first lemma is borrowed from Chowdhury and Gopalan (2017), which
provides a uniform confidence interval for the objective function based on maximum infor-
mation gain.

Lemma 1 (Theorem 2 of Chowdhury and Gopalan (2017)) Let {xn}n≥1 be a dis-
crete time stochastic process which is measurable with respect to the σ-algebra {Fn−1}n≥1.
Let {εn}n≥1 be a real-valued stochastic process such that is (a) Fn-measurable, and (b) R-
sub-Gaussian conditionally on Fn−1 for some R ≥ 0. Let f be a member of the RKHS
of real-valued functions with RKHS norm bounded by B. For any δ ∈ (0, 1), define βn =
B +R

√
2(γn + 1 + log(1/δ)). Then, with probability at least 1− δ, the following holds:

uniformly over all x ∈ D and n ≥ 0, |f(x)− µn(x)| ≤ βnσn(x), (22)

where µn(x), σ2
n(x) are posterior mean and variance kernel as defined in (7), with λ2 =

1 + 2
N .
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The second lemma plays a key role in the proof of Theorem 1. It states that if the
acquisition function of point a x is larger than its evaluation cost, then the quantity
zn(x) = µn(x)−ξn

σn(x) must be lower bounded. This explains why EIC can achieve a smaller
cumulative regret than traditional EI. Lemma 2 is a crucial technical contribution of the
paper. Moreover, the lower bound of zn(x) in (23) is asymptotically tight and hence cannot
be further improved.

Lemma 2 Let zn(x) := µn(x)−ξn
σn(x) . For 1 ≤ n ≤ N − 1,

αEIn (x) ≥ Ln(x) only if zn(x) ≥ −ωn
√

2 log(N − n). (23)

The third lemma provides upper and lower bounds on the EI acquisition function, which
is based on Bull (2011) and Wang and De Freitas (2014).

Lemma 3 Let In(x) = max{0, f(x) − ξn}. Under the situation where event (22) occurs,
the following holds uniformly for all x ∈ D and n ≥ 0:

max
{
In(x)− βnσn(x), h(−βn/ωn)

h(βn/ωn) In(x)
}
≤ αEIn (x) ≤ In(x) + (βn + ωn)σn(x).

It can be seen from Lemma 3 that the upper bound of acquisition function depends on
In(x) and σn(x). In Theorem 1, we further bound these two quantities based on Lemma 4
and 5.

Lemma 4 Let In(x) = max{0, f(x) − ξn} with incumbent ξn := max1≤i≤n µn(xi). Under
the situation where event (22) occurs, the following holds:

N−1∑
n=1

In(xn+1) ≤
√

2B + βN

N−1∑
n=0

σn(xn+1).

Lemma 5 For any N ≥ 1, the points x1,x2, . . . ,xN selected by any algorithm satisfy

N−1∑
n=0

σ2
n(xn+1) ≤ 4λ2γN .

Lemma 6 bounds the function value difference for any two points within the domain
based on RKHS norm.

Lemma 6 Assume (A1) and (A2). ∀x,x′ ∈ D, we have f(x)− f(x′) ≤
√

2B.

The last lemma shows that the posterior variance kernel is monotonically decreasing in
the number of iterations.

Lemma 7 ∀x ∈ D and n ≥ 1, we have

σ2
n(x) = σ2

n−1(x)−
k2
n−1(x,xn)

σ2
n−1(xn) + λ2

, (24)

where kn(·, ·) are posterior covariance kernel as defined in (6), and by convention, k0(·, ·) =
k(·, ·) and σ2

0(x) = k0(x,x). Hence σ2
n(x) is monotonically decreasing in n.
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PROOF OF THEOREM 1. Let zn(x) = µn(x)−ξn
σn(x) and let h(x) = xΦ(x) + φ(x).

Express the acquisition function and the evaluation cost function as:

αEIn (x) = ωnσn(x)h
( zn(x)

ωn

)
, (25)

Ln(x) = ωnσn(x)h
(
− zn(x)

ωn

)
/(N − n). (26)

Let rn = f(x∗)− f(xn+1), then the cumulative regret can be written as

RN =

n0−1∑
n=0

rn +
N−1∑
n=n0

rn.

By (12) and Lemma 6,
n0−1∑
n=0

rn ≤
√

2Bn0 = cdB
√

2N. (27)

For n ≥ n0, we break the regret at iteration n as

rn = f(x∗)− f(xn+1) = [f(x∗)− ξn] + [ξn − f(xn+1)] = [I] + [II].

Bounding term [I]. Since ωn = c0

√
γn + 1 + log(1/δ) and given that

√
γn + 1 + log(1/δ) ≥ 1,

we have βn/ωn ≤ (B +
√

2R)/c0. Hence by Lemma 3,

[I] ≤ In(x∗) ≤ h(βn/ωn)
h(−βn/ωn)α

EI
n (x∗) ≤ C ′αEIn (x∗) for some C ′ > 0. (28)

Here, C ′ is a universal constant that depends only on B,R and c0. To bound αEIn (x∗), we
consider two cases:

• αEIn (x∗) ≥ Ln(x∗) at iteration n. By Lemma 3,

αEIn (x∗) ≤ αEIn (xn+1) ≤ In(xn+1) + (βn + ωn)σn(xn+1), (29)

where the first inequality follows because xn+1 has the largest acquisition function
value.

• αEIn (x∗) < Ln(x∗) at iteration n. Since dh
dx = Φ(x) > 0 and limx→−∞ h(x) = 0, we

have h(x) > 0. By (25), (26) and h(x) > 0, this implies that

h
( zn(x∗)

ωn

)
< h

(
− zn(x∗)

ωn

)
/(N − n) ≤ h

(
− zn(x∗)

ωn

)
. (30)

Since h(z) = z + h(−z), we can deduce from (30) that zn(x∗) ≤ 0 when αEIn (x∗) <
Ln(x∗). Let x∗n = arg max1≤i≤n µn(xi). We have

h
(
− zn(x∗)

ωn

)
≤ ξn − µn(x∗)

ωnσn(x∗)
+ 1 (31)

≤ f(x∗n) + βnσn(x∗n)− f(x∗) + βnσn(x∗)

ωnσn(x∗)
+ 1

≤
√

2B + βnσn(x∗n) + βnσn(x∗)

ωnσn(x∗)
+ 1,
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where the first inequality follows from h(z) ≤ z+ 1 when z ≥ 0, the second inequality
follows from Lemma 1 and the last inequality follows from Lemma 6. Substitute (31)
back into (26) yields:

αEIn (x∗) < Ln(x∗) ≤
√

2B + βnσn(x∗n) + (βn + ωn)σn(x∗)

N − n
≤
√

2B + 2βn + ωn
N − n

,

(32)
where the last inequality holds because, by assumption (A1) and Lemma 7, it follows
that 0 ≤ σ2

n(x) ≤ σ2
0(x) = k(x,x) ≤ 1 for all x ∈ D.

By combining (28), (29) and (32), we can deduce that

[I] ≤ C ′[In(xn+1) + (βn + ωn)σn(xn+1) + (
√

2B + 2βn + ωn)/(N − n)]. (33)

Bounding term [II]. Suppose there exist an x ∈ D at iteration n such that αEIn (x) ≥

Ln(x), then by Lemma 1 and Lemma 2,

[II] = ξn − f(xn+1) (34)

=
(
− µn(xn+1)−ξn

σn(xn+1) + µn(xn+1)−f(xn+1)
σn(xn+1)

)
σn(xn+1)

≤
[
ωn
√

2 log(N − n) + βn
]
σn(xn+1).

On the other hand, suppose there exists no such point, then xn+1 = arg max1≤i≤n µn(xi).
By Lemma 1, ξn − f(xn+1) = µn(xn+1)− f(xn+1) ≤ βnσn(xn+1) and (34) still holds.
Combining (33), (34) and Lemma 5:

N−1∑
n=n0

rn ≤
N−1∑
n=n0

{
C ′In(xn+1) + C ′(

√
2B + 2βn + ωn)(N − n)−1 (35)

+
[(
C ′ +

√
2 log(N − n)

)
ωn + (C ′ + 1)βn

]
σn(xn+1)

}
≤ C ′

N−1∑
n=1

In(xn+1) + C ′(
√

2B + 2βN + ωN )
N−1∑
n=1

(N − n)−1

+
[(
C ′ +

√
2 logN

)
ωN + (C ′ + 1)βN

]N−1∑
n=0

σn(xn+1)

≤ C ′
√

2B + C ′(
√

2B + 2βN + ωN )(logN + 1)

+
[(
C ′ +

√
2 logN

)
ωN + (2C ′ + 1)βN

]N−1∑
n=0

σn(xn+1),

where the last inequality follows from Lemma 4 and
∑N

i=1(N − n)−1 ≤ logN + 1. By the
Cauchy-Schwarz inequality and Lemma 5,

N−1∑
n=0

σn(xn+1) ≤

√√√√N
N−1∑
n=0

σ2
n(xn+1) ≤ 2λ

√
NγN . (36)
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Finally, combining (27), (35) and (36), we have

RN ≤ cdB
√

2N + C ′
√

2B + C ′(
√

2B + 2βN + ωN )(logN + 1) (37)

+2λ
[(
C ′ +

√
2 logN

)
ωN + (2C ′ + 1)βN

]√
γNN.

Applying βN = B+R
√

2(γN + 1 + log(1/δ)), ωN = c0

√
γN + 1 + log(1/δ) and λ2 = 1 + 2

N
to (37) gives us (21). Theorem 1 follows. ut

Remark 2 The main challenge in bounding the cumulative regret of EI lies in establishing
an upper bound for term [II]. Our proposed EIC algorithm provides a significant advantage
here, as it ensures that the inequality in (34) holds. This allows us to derive a tighter
cumulative regret upper bound than what is currently achievable with EI.

The EI is designed to minimize the simple regret. Related theoretical analysis can be
found in Bull (2011), where it is referred to as the convergence rate. EI is inherently a
myopic strategy, selecting points under the assumption that the experiment will conclude
after the next observation. In contrast, EIC is designed to minimize cumulative regret,
which is why we adjust it by incorporating the evaluation costs. Consequently, EI and
EIC are suited for different scenarios: EI focuses on the final suggested value, while EIC
emphasizes overall performance throughout the entire procedure. They evaluate performance
using different metrics, targeting on simple regret and cumulative regret, respectively.

5. Experiments

In the experiments, we examine the numerical performance of our EIC algorithm using
synthetic test functions (Section 5.1) as well as a real-world dataset (Section 5.2). For each
test function/dataset, we generate R = 100 independent experiment trials, and the results
are summarized in Figures 2 and 3. The solid line represents the average cumulative regret
over these independent trials, with the shaded area showing the corresponding 95% confi-
dence region. We use the GP prior with the mean function of µ ≡ 0 and the SE covariance
kernel in all experiments. The parameters are estimated using the maximum likelihood
method by Santner et al. (2018). The total budget N for each test function/dataset is set
to N = 200 + n0, where the number of initial design points is set at n0 = 16, 36, 64 for the
2, 4, 6–dimensional objective functions respectively.

We compare our proposed EIC algorithm with the acquisition functions of the traditional
EI, GP-UCB (Srinivas et al., 2010), and GP-TS (Chowdhury and Gopalan, 2017). We also
compare with the algorithm proposed by Nguyen et al. (2017) which we refer to as EI-
Nyugen. The EI-Nyugen algorithm requires a user-specified threshold parameter κ, and
selects the point that maximizes the acquisition function αn(x) if the largest acquisition
function value is not smaller than κ. Otherwise, the point with the largest observed sample
mean is selected. We follow their suggestion and choose κ = 10−4 in our experiments.

5.1 Synthetic Experiments

In the synthetic experiments, we consider six commonly used test functions: Schwefel-2,
Eggholder-2, Ackley-2, Levy-4, Griewank-6, and Hartmann-6. Table 1 lists the mathemati-
cal expressions of these functions. Before implementing any BO algorithm, all test functions
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are standardised so that the function values have mean zero and standard deviation one.
The standard deviation of the homogenous noise σ is set as 0.1.

Figure 2 summarizes the results. We first observe that the traditional EI and EI-
Nyugen have nearly identical performance for all test functions. This is probably due to
the pre-specified threshold κ in EI-Nyugen being too small, which leads to the acquisition
function seldom, if ever, falling below κ throughout the entire experiment. Therefore, EI-
Nyugen behaves identically to the traditional EI. The GP-TS does not peform well across
different functions probably due to its high randomness. Our proposed EIC algorithm has
the smallest mean cumulative regret for the Eggholder-2, Griewank-6 and Harmann-6 test

Functions d Equation

Schwefel-2 2

f(x) = − 1

274.3

(
418.9829 ∗ 2−

2∑
i=1

wi sin
(√
|wi|
)
− 838.57

)
wi = 500xi, i = 1, 2

xi ∈ [−1, 1], i = 1, 2

x∗ = (0.8419, 0.8419), f∗ = 3.057

Eggholder-2 2

f(x) = − 1

347.31

(
− (w2 + 47) sin

(√∣∣∣w2 +
w1

2
+ 47

∣∣∣)− w1 sin
(√
|w1 − (w2 + 47)|

)
− 1.96

)
wi = 512xi, i = 1, 2

xi ∈ [−1.17, 1.17], i = 1, 2

x∗ = (1, 0.7895), f∗ = 2.769

Ackley-2 2

f(x) = 20 exp

−0.2

√√√√1

2

2∑
i=1

x2
i

− exp

(
1

2

2∑
i=1

cos (2πxi)

)
− 20− exp(1)

xi ∈ [−32.768, 32.768], i = 1, 2

x∗ = (0, 0), f∗ = 0

Levy-4 4

f(x) = − 1

27.9

(
sin2 (πw1) +

3∑
i=1

(wi − 1)2 [1 + 10 sin2 (πwi + 1)
]

+ (w4 − 1)2 [1 + sin2 (2πw4)
]
− 42.55

)
,

wi = 1 +
xi − 1

4
, for all i = 1, · · · , d

xi ∈ [−10, 10], i = 1, · · · , 4
x∗ = (1, 1, 1, 1), f∗ = 1.525

Griewank-6 6

f(x) = − 1

0.47

(
6∑
i=1

x2
i

4000
−

6∏
i=1

cos

(
xi√
i

)
+ 1− 2.25

)
xi ∈ [−50, 50], i = 1, · · · , 6

x∗ = (0, 0, 0, 0, 0, 0), f∗ = 4.787

Hartmann-6 6

f(x) = − 1

0.38

− 4∑
i=1

αi exp

− 6∑
j=1

Aij (xj − Pij)2

+ 0.26


α = (1.0, 1.2, 3.0, 3.2)T

A =


10 3 17 3.50 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14



P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


xi ∈ [0, 1], i = 1, · · · , 6

x∗ = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573), f∗ = 8.059

Table 1: List of test functions
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Figure 2: Cumulative regret of different BO algorithms on six test functions. EI and EI-Nyu
lines overlap, causing the green line (EI-Nyu) to be obscured by the yellow line (EI).
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Figure 3: Cumulative regret of different BO algorithms in the neural network hyper-
parameter tuning experiment.

functions after 200+n0 iterations. In addition, for these functions, the confidence regions of
CumRegret for EIC overlap with those of UCB, showing EIC is competitive with UCB. The
confidence regions of CumRegret for EIC does not overlapped with EI, EI-Nyugen and GP-
TS, hence the reduction on cumulative regret is statistically significant. For the Schwefel-2,
GP-UCB has the smallest cumulative regret. However the confidence regions of GP-UCB,
EIC, EI-Nyugen and traditional EI overlap, indicating there is no statistical significance
among these algorithms under 95% confidence level. For the Ackley-2 and the Levy-4
function, we use a bigger budget of N = 600 + n0, since none of the compared algorithms
is able to converge after 200 + n0 iterations. For the Ackley-2, GP-UCB has the smallest
cumulative regret at the beginning, but it is outperformed by EIC after 350 iterations. For
Levy-4 function, EI-Nyugen, EI, GP-UCB, and EIC have similar performance, but EIC
shows a tendency to converge after 600 iterations while other algorithm’s cumulative regret
values continue to grow. These results show that our EIC algorithm performs competitively
and consistently across a variety of test functions.

5.2 Real-world Experiment

In this section, we test the performance of various BO algorithms on a hyper-parameter
tuning experiment for a neural network model, which is used in a healthcare application to
classify whether a cancer is malignant or benign. We adopt the breast cancer Wisconsin
dataset (https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic))
which contains 569 patients. Among them, 212 patients have malignant cancer and the
other 357 have benign cancer. The dataset is further split into training and testing datasets
with a ratio of 7:3. A one-hidden-layer multilayer perception (MLP) neural network model
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is trained to classify whether the patients have malignant or benign cancer based on 30-
dimensional covariates. We consider the tuning of four hyper-parameters: the number of
hidden units, batch size, learning rate, and learning rate decay coefficients. To evaluate
a point (i.e., a 4-dimensional vector specifying the values of the four hyper-parameters)
selected by BO algorithms, we first train the MLP on the training dataset using the corre-
sponding selected values of the hyper-parameters, and then evaluate the trained MLP on
the testing dataset and report the classification accuracy as the corresponding observation.

In summary, this experiment involves a 4-dimensional optimization problem with the
objective function f representing the classification accuracy. Since the true maximizer x∗

and the maximum value f(x∗) are unknown, we set the maximum value f(x∗) to be 1 (i.e.,
an accuracy of 100%) in the calculation of the cumulative regret. Figure 3 summarizes the
results for this experiment. We observe that for GP-UCB, EI-Nyugen and traditional EI,
their confidence regions overlap and hence have very similar performance. The EIC achieves
the smallest cumulative regret after 150 iterations and the difference is significant as the its
confidence regions do not overlap with those of other algorithms.

6. Conclusion

In this article, we propose the EIC algorithm which aims to enhance the performance
of traditional EI under the evaluation metric of cumulative regret. This is achieved by
introducing an evaluation cost function that is compared against the acquisition function to
balance the potential improvement to the cost of evaluation at each point. The algorithm is
then designed to sample a point only if its acquisition function value exceeds its evaluation
cost. We show that EIC can achieve a finite-time regret upper bound ofO

(√
NγN (logN)1/2

)
with high probability, and use both synthetic and real-world experiments to demonstrate
that EIC indeed achieves smaller cumulative regret compared to traditional EI as well as
other commonly used BO algorithms.

We suggest here two extensions of BO for future work. The first is to consider the
optimization in more complex domains, such as graphs, discrete sequences and trees. The
second is to handle the extra domain specific knowledge. For example in some nuclear safety
applications we may know the optimum function value in advance, and how to incorporate
such extra information still remains an open problem.
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Appendix A. Proof of Supporting Lemmas

Proof of Lemma 1. See Theorem 2 of Chowdhury and Gopalan (2017). ut

Proof of Lemma 2. Let h(z) := zΦ(z) + φ(z). We can write

αEIn (x) = ωnσn(x)h
( zn(x)

ωn

)
and

Ln(x) = ωnσn(x)h
(
− zn(x)

ωn

)
/(N − n).

Since h(z) = z + h(−z), αEIn (x) ≥ Ln(x) is equivalent to

zn(x) ≥ −(N − n− 1)ωnh
( zn(x)

ωn

)
. (38)

It suffices to show that (38) does not holds for zn(x) < −ωn
√

2 log(N − n), that is to show

zn(x)
ωn

< −(N − n− 1)h
( zn(x)

ωn

)
when zn(x) < −ωn

√
2 log(N − n). (39)

Check that (39) holds for n = N − 1. Since Φ(x) > (−1/x+ 1/x3)φ(x) for x < 0, we have

h
( zn(x)

ωn

)
= zn(x)

ωn
Φ
( zn(x)

ωn

)
+ φ

( zn(x)
ωn

)
< φ

( zn(x)
ωn

)
/( zn(x)

ωn
)2.

Hence to show (39), it suffices to show that for 1 ≤ n ≤ N − 2,

(N − n− 1)φ
( zn(x)

ωn

)
< −

( zn(x)
ωn

)3
when zn(x) < −ωn

√
2 log(N − n). (40)

Taking logarithm on both side of (40) give us

log
(
N−n−1√

2π

)
− 1

2

( zn(x)
ωn

)2
< 3 log

(
− zn(x)

ωn

)
.

Let g(y) = log
(
N−n−1√

2π

)
− 1

2y
2 − 3 log(−y). Check that g′(y) > 0 for y < 0 and

g
(
−
√

2 log(N − n)
)

= log
(
N−n−1
N−n

)
− log(

√
2π)− 3

2 log(2 log(N − n)) < 0.

Hence (40) holds for for 1 ≤ n ≤ N − 2. ut

Proof of Lemma 3. Define h(z) := zΦ(z)+φ(z). Let zn = µn(x)−ξn
σn(x) and qn = f(x)−ξn

σn(x) .

Under the situation where event (22) occurs, we have |zn − qn| = |µn(x)−f(x)
σn(x) | ≤ βn.

To show the upper bound, we have

αEIn (x) = ωnσn(x)h( znωn
)

≤ ωnσn(x)h( qn+βn
ωn

)

≤ ωnσn(x)h(max{0,qn}+βn
ωn

)

≤ ωnσn(x)[max{0,qn}
ωn

+ βn
ωn

+ 1]

≤ In(x) + (βn + ωn)σn(x),
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where the third inequality follows from h(z) ≤ z + 1 for z ≥ 0.
To show the lower bound, note that

αEIn (x) = ωnσn(x)h( znωn
) (41)

≥ znσn(x)

≥ (qn − βn)σn(x)

= f(x)− ξn − βnσn(x)

≥ In(x)− βnσn(x),

where the first inequality follows from h(z) ≥ z for all z. Also, suppose that f(x)− ξn ≥ 0,
we have

αEIn (x) ≥ ωnσn(x)h( qn−βnωn
) (42)

≥ ωnσn(x)h(− βn
ωn

)

(43)

Combining (41) and (42) gives us

αEIn (x) ≥
ωnh(− βn

ωn
)

ωnh(− βn
ωn

) + βn
In(x) (44)

=
h(− βn

ωn
)

h( βnωn
)
In(x),

where the last line follows from the fact that h(z) = z + h(−z). If f(x)− ξn < 0, (44) still
holds as αEIn (x) > 0. Hence Lemma 3 follows. ut

Proof of Lemma 4. Suppose there exists some 1 ≤ n1 < n2 < · · · < nK < N and
K ≥ 1 such that f(xnk+1)− ξnk

≥ 0 for k = 1, . . . ,K. With a slight abuse of notation, let
n0 = 0 (rather than the total number of initial design points). Under the situation where
event (22) occurs, we have

N−1∑
n=1

In(xn+1) =

N−1∑
n=1

(
f(xn+1)− ξn

)
1{f(xn+1)≥ξn} (45)

=

K∑
k=1

(
f(xnk+1)− ξnk

)
≤

K∑
k=1

(
f(xnk+1)− µnk

(xnk−1+1)
)

≤
K∑
k=1

(
f(xnk+1)− f(xnk−1+1) + βnk

σnk
(xnk−1+1)

)
= f(xnK+1)− f(xn0+1) +

K∑
k=1

βnk
σnk

(xnk−1+1)
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The first inequality of (45) follows from the fact that ξnk
= max1≤i≤nk

µnk
(xi) ≥

µnk
(xnk−1+1) and the second inequality follows from (22). By Lemma 7, the posterior

variance is monotonically decreasing in n, and we have

K∑
k=1

βnk
σnk

(xnk−1+1) ≤ βN

K∑
k=1

σnk
(xnk−1+1) (46)

≤ βN

K∑
k=1

σnk−1
(xnk−1+1)

≤ βN

N−1∑
n=0

σn(xn+1)

Hence Lemma 4 follows from (45), (46) and Lemma 6. ut

Proof of Lemma 5. Let yn = f(xn) + εn for 1 ≤ n ≤ N , with ε1, . . . , εN
i.i.d∼

N(0, λ2ω2
N ). Let FN =

(
f(x1), f(x2) . . . , f(xN )

)T
and YN = (y1, y2, . . . , yN )T . The mutual

information between YN and FN can be written as

I(YN ;FN ) = H(YN )−H(YN |FN ), (47)

where H(X) denote the differential entropy of X and H(X|Y ) denote the conditional (dif-
ferential) entropy of X given Y . By the chain rule for entropy,

H(YN ) =
N∑
n=1

H(yn|yn−1, . . . , y1) =
1

2

N∑
n=1

log
(
2πeω2

N (σ2
n−1(xn) + λ2)

)
, (48)

where the last equality follows since yn|yn−1, . . . , y1 ∼ N
(
µn−1(xn), ω2

N (σ2
n−1(xn) + λ2)

)
.

Moreover, conditioning on FN , YN follows a multivariate normal distribution with covari-
ance matrix Σ = λ2ω2

NIN ). Hence

H(YN |FN ) =
1

2
log
(
(2πe)Ndet(Σ)

)
=

1

2

N∑
n=1

log(2πeλ2ω2
N ). (49)

Combining (48) and (49) gives us

I(YN ;FN ) =
1

2

N∑
n=1

log
(
1 +

σ2
n−1(xn)

λ2

)
=

1

2

N−1∑
n=0

log
(
1 + σ2

n(xn+1)
λ2

)
.

By the definition of maximum information gain, γN ≥ I(YN ;FN ). Using assumption (A1)
and Lemma 7, it follows that 0 ≤ σ2

n(xn+1) ≤ σ2
0(xn+1) = k(xn+1,xn+1) ≤ 1. Given that

λ2 = 1 + 2/N , this implies 0 ≤ σ2
n(xn+1)
λ2

≤ 1 for all n. Since log(1 + x) ≥ x/2 for x ∈ [0, 1],
we have

γN ≥
1

2

N−1∑
n=0

log
(
1 + σ2

n(xn+1)
λ2

)
≥ 1

4

N−1∑
n=0

σ2
n(xn+1)
λ2

.
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Rearranging the terms gives us Lemma 5. ut

Proof of Lemma 6. By (19), the Cauchy-Schwarz inequality and (4.2.1),

f(x)− f(x′) = 〈f, k(·,x)〉Hk
− 〈f, k(·,xn0)〉Hk

(50)

= 〈f, k(·,x)− k(·,x′)〉Hk

≤ ‖f‖Hk
‖k(·,x)− k(·,x′)‖Hk

≤ B‖k(·,x)− k(·,x′)‖Hk
.

Since k is isotropic, k(x,x) = 1 and k(x,x′) > 0, we have

‖k(·,x)− k(·,x′)‖Hk
(51)

=
√
〈k(·,x)− k(·,x′), k(·,x)− k(·,x′)〉Hk

=
√

2− k(x,x′) ≤
√

2.

Combining (50) and (51) give us the result. ut

Proof of Lemma 7. Recall that X = (x1, . . . ,xn)T , kxX = kTXx =(
k(x1,x), . . . , k(xn,x)

)
and the (i, j) entry of KXX is k(xi,xj). Define the leave-one-out

vector X(−n) = (x1, . . . ,xn−1)T and kxX(−n) = kT
X(−n)x

=
(
k(x1,x), . . . , k(xn−1,x)

)
. we

can express

KXX + λ2In =

(
KX(−n)X(−n) + λ2In−1 kX(−n)xn

kxnX(−n) k(xn,xn) + λ2

)
.

Using the block matrix inversion formula, we have

(KXX + λ2In)−1 =

(
A−1 + ρ−1A−1BBTA−1 −ρ−1A−1B

−ρ−1BTA−1 ρ−1

)
, (52)

where A−1 = (KX(−n)X(−n)+λ2In−1)−1, B = kX(−n)xn
and ρ = (k(xn,xn)+λ2)−BTA−1B =

σ2
n−1(xn) + λ2 is the Schur complement. By (52) and the block matrix multiplication

formula:

σ2
n(x) = k(x,x)− kxX(KXX + λ2In)−1kXx

= k(x,x)−
(
kxX(−n) k(x,xn)

)(A−1 + ρ−1A−1BBTA−1 −ρ−1A−1B
−ρ−1BTA−1 ρ−1

)(
kX(−n)x

k(xn,x)

)
= k(x,x)− kxX(−n)A−1kX(−n)x − ρ

−1kxX(−n)A−1BBTA−1kX(−n)x

+ ρ−1kxX(−n)A−1Bk(xn,x) + ρ−1k(x,xn)BTA−1kX(−n)x − ρk(x,xn)k(xn,x)

= σ2
n−1(x)− ρ−1

(
k2(x,xn)− 2k(x,xn)BTA−1kX(−n)x + (BTA−1kX(−n)x)2

)
= σ2

n−1(x)− ρ−1
(
k(x,xn)−BTA−1kX(−n)x

)2
= σ2

n−1(x)−
k2
n−1(x,xn)

σ2
n−1(xn) + λ2

. ut
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S. Grünewälder, J. Y. Audibert, M. Opper, and J. Shawe–Taylor. Regret bounds for gaus-
sian process bandit problems. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 273–280, 2010.

P. Hennig and C. J. Schuler. Entropy search for information-efficient global optimization.
Journal of Machine Learning Research, 13:1809–1837, 2012.

J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search
for efficient global optimization of black-box functions. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Systems, volume 1, pages 918–926,
2014.

D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global optimization of stochastic black-box
systems via sequential kriging meta-models. Journal of Global Optimization, 34:441–466,
2006.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455–492, 1998.

M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. Gaussian processes and
kernel methods: A review on connections and equivalences. arXiv preprint, 2018.

K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Póczos. Parallelised bayesian
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J. Mǒckus, V. Tiesis, and A. Žilinskas. The application of bayesian methods for seeking the
extremum. Towards Global Optimization, 2:117–129, 1978.

S. H. Ng and J. Yin. Bayesian kriging analysis and design for stochastic simulations. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 22:1–26, 2012.

V. Nguyen, S. Gupta, S. Rana, C. Li, and S. Venkatesh. Regret for expected improvement
over the best-observed value and stopping condition. In Proceedings of Machine Learning
Research, volume 77, pages 279–294, 2017.

M. A. Osborne, R. Garnett, and S. J. Roberts. Gaussian processes for global optimization.
In 3rd international conference on learning and intelligent optimization, pages 1–15, 2009.

D. Packwood. Bayesian Optimization for Materials Science. Springer Singapore, 2017.

V. Picheny, D. Ginsbourger, Y. Richet, and G. Caplin. Quantile-based optimization of noisy
computer experiments with tunable precision. Technometrics, 55:2–13, 2013.

I. O. Ryzhov. On the convergence rates of expected improvement methods. Operations
Research, 64:1515–1528, 2016.

S. Sano, T. Kadowaki, K. Tsuda, and S. Kimura. Application of bayesian optimization for
pharmaceutical product development. Journal of Pharmaceutical Innovation, 15:333–343,
2020.

T. J. Santner, B. J. Williams, and W. I. Notz. The design and analysis of computer
experiments (Second Edition). Springer Nature, 2018.

J. Scarlett, I. Bogunovic, and V. Cevher. Lower bounds on regret for noisy gaussian process
bandit optimization. In Conference on Learning Theory, pages 1723–1742, 2017.

J. Scarlett, I. Bogunovic, and V. Cevher. Lower bounds on regret for noisy gaussian process
bandit optimization. arXiv preprint, 2018.

31



Hu, Wang, Dai, Low and Ng

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104:148–175,
2016.

R. H. L. Sim, Y. Zhang, B. K. H. Low, and P. Jaillet. Collaborative bayesian optimization
with fair regret. In International Conference on Machine Learning, pages 9691–9701,
2021.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms. Advances in Neural Information Processing Systems, 25, 2012.

N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: no regret and experimental design. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, pages 1015–1022, 2010.

A. Takahashi and T. Suzuki. Bayesian optimization design for finding a maximum tolerated
dose combination in phase i clinical trials. The International Journal of Biostatistics,
2021. doi: 10.1515/ijb-2020-0147.

A. L. Teckentrup. Convergence of gaussian process regression with estimated hyper-
parameters and applications in bayesian inverse problems. SIAM/ASA Journal on Un-
certainty Quantification, 8:1310–1337, 2020.

W. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25:285–294, 1933.

H. M. Torun, M. Swaminathan, A. K. Davis, and M. L. F. Bellaredj. A global bayesian op-
timization algorithm and its application to integrated system design. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 26:792–802, 2018.

H. Tran-The, S. Gupta, S. Rana, and S. Venkatesh. Regret bounds for expected improve-
ment algorithms in gaussian process bandit optimization. In International Conference on
Artificial Intelligence and Statistics, pages 8715–8737, 2022.

S. Vakili, K. Khezeli, and V. Picheny. On information gain and regret bounds in gaussian
process bandits. In International Conference on Artificial Intelligence and Statistics,
pages 82–90, 2021.

E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm
with fixed mean and covariance functions. Journal of Statistical Planning and inference,
140:3088–3095, 2010.
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