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Abstract

In the field of non-Euclidean statistical analysis, a trend has emerged in recent times, of
attempts to recover a low dimensional structure, namely a manifold, underlying the high
dimensional data. Recovering the manifold requires the noise to be of a certain concen-
tration and prevailing methods address this requirement by constructing an approximated
manifold that is based on the tangent space estimation at each sample point. Although
theoretical convergence for these methods is guaranteed, the samples are either noiseless or
the noise is bounded. However, if the noise is unbounded, as is commonplace, the tangent
space estimation at the noisy samples will be blurred – an undesirable outcome since fitting
a manifold from the blurred tangent space might be more greatly compromised in terms
of its accuracy. In this paper, we introduce a new manifold-fitting method, whereby the
output manifold is constructed by directly estimating the tangent spaces at the projected
points on the latent manifold, rather than at the sample points, thus reducing the error
caused by the noise. Assuming the noise is unbounded, our new method has a high prob-
ability of achieving theoretical convergence, in terms of the upper bound of the distance
between the estimated and latent manifold. The smoothness of the estimated manifold
is also evaluated by bounding the supremum of twice difference above. Numerical simula-
tions are conducted as part of this new method to help validate our theoretical findings and
demonstrate the advantages of our method over other relevant manifold fitting methods.
Finally, our method is applied to real data examples.

Keywords: Manifold learning, Riemannian embedding, Convergence, Smoothness

1. Introduction

Linearity has been viewed as a cornerstone in the development of statistical methodology.
For decades, prominent progress in statistics has been made with regard to linearizing the
data and the way we analyze them. More recently, the phenomenon of high-throughput
data, which share a high dimensional characteristic in their varying forms, has become
more commonplace. Although each data point usually represents itself as a long vector
or a large matrix, in principle they all can be viewed as points on or near an intrinsic
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manifold. Moreover, modern data sets no longer comprise samples of real vectors in a real
vector space but samples of much more complex structures, assuming values in spaces that
are naturally not (Euclidean) vector spaces. We are verily witnessing an explosion in the
volumn of “complex data” with a geometric structure and, therefore, a growing need for
statistical analysis, utilizing the nature of the data space.

The manifold hypothesis has been carefully studied in Fefferman et al. (2016). Here,
we only present several relevant examples to make sense of that hypothesis intuitively: the
high dimensional data samples tend to lie near a lower dimensional manifold embedded
in the ambient space. The classical Coil20 dataset (Nene et al., 1996), which contains
images of 20 objects, may be used as an example. For each object, images are taken every
5 degrees as the object is rotated on a turntable, and each image is of size 32 × 32. In
this case, the dimension of ambient space is the number of pixels, which is 1024, while the
latent intrinsic structure can be compactly described with the angle of rotation. In addition
to Coil20, such a structure can be found in many other data collections. In seismology,
two-dimensional coordinates of earthquake epicenters are located along a one-dimensional
fault line. In face recognition, high-dimensional facial images are dependent on lighting
conditions (Georghiades et al., 2002) or head orientations (Happy et al., 2012).

Given this form of data collection, a natural problem arises: how can we fit a manifold
to this data collection? The aim of manifold fitting is to represent the latent manifold as an
embedded sub-manifold of the ambient space. Once the latent manifold is learned, various
types of analyses can be carried out based on it, such as denoising the observed samples by
projecting them to the learned manifold (Gong et al., 2010), generating new data samples
from the manifold (Radford et al., 2015), classifying samples according to the manifold (Yao
and Zhang, 2020), and detecting fault lines for seismological purposes (Yao et al., 2024).
These manifold-based techniques represent powerful tools for understanding and working
with complex data structures.

In addition to manifold fitting, dimension reduction constitutes another crucial branch
of manifold learning. Over the past two decades, a litany of dimension reduction methods
have emerged, each aiming to uncover the intrinsic structure of data by identifying its lower-
dimensional embedding, as discussed in the review by Ma and Fu (2011). Unlike manifold
fitting, however, these methods primarily focus on mapping data from the ambient space to
a lower-dimensional one. Consequently, the outputs of most dimension reduction methods
consist of low-dimensional embeddings rather than points in the ambient space, although
for applications such as denoising and data generation, relying solely on low-dimensional
embeddings may not suffice.

The limitations of dimension reduction and the potential applications of manifold fitting
underline the value of formulating the manifold fitting problem, as follows. Suppose the
observed data samples X = {xi ∈ RD}Ni=1 are in the form

xi = yi + ξi,

where y1, · · · , yN are unobserved variables drawn from the uniform distribution supported
on the latent manifoldM with dimension d < D. Generally,M is assumed to be a compact
and smooth sub-manifold embedded in the ambient space RD. The precise conditions onM
will be detailed in Section 2.1. The uniform distribution assumption of yi sampled fromM
is the same as those used in the related works (Genovese et al., 2012c, 2014; Mohammed and
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Narayanan, 2017). Here, ξ1, · · · ξN are drawn from a distribution G. The assumptions about
the noisy distribution G differ among the related work. The simplest assumption is that the
observed samples are noiseless (Fefferman et al., 2016; Mohammed and Narayanan, 2017).
However, some literature assumes that the noise is distributed in a bounded region centered
at the origin, which means that the observed samples are located in a tube centered at M
(Genovese et al., 2012b). Other literature, such as Genovese et al. (2012c, 2014); Fefferman
et al. (2018), assumes G to be a Gaussian distribution supported on RD, whose density at
ξ is

(
1

2πσ2
)
D
2 exp(−‖ξ‖

2
2

2σ2
). (1.1)

The tail of the Gaussian distribution might make the theoretical analysis more challenging
than in the previous two cases. Strictly speaking, previous manifold fitting methods have not
directly addressed this problem, nor have they proved the convergence of the fitted manifold
under this assumption. In this paper, we are concerned with the Gaussian assumption of
noisy distribution, denoting it as Gσ to stress the deviation parameter σ hereafter. Under
the above settings, the goal is to produce a smooth manifold Mout convergent to M.
Specifically, if σ is sufficiently small, one could derive Mout such that d(x,M) ≤ O(σ)
holds for any arbitrary x ∈ Mout. In particular, Mout converges to M when σ → 0.
The convergence with respect to σ is the domain that Fefferman et al. (2018) is built on,
although its final theoretical result is expressed through sample complexity.

1.1 Related work

Methodological studies for manifold fitting can be traced back to works from several decades
ago on the principal curve (Hastie and Stuetzle, 1989), with every point on the principal
curve/surface defined as the conditional mean value of the points in the orthogonal subspace
of the principal curve. Based on Hastie and Stuetzle (1989), many other principal-curve
algorithms have been proposed, such as those of Banfield and Raftery (1992); Stanford and
Raftery (2000); Verbeek et al. (2002), each attempting to achieve lower estimation bias and
improved robustness. More recently, Ozertem and Erdogmus (2011) describes the principal
curve in a seemingly different way albeit in a probabilistic sense. In the work by Ozertem and
Erdogmus (2011), every point on the principal curve/surface is the local maximum, not the
expected value, of the probability density in the local orthogonal subspace. This definition
of the principal curve/surface is formulated as a ridge of the probability density. Although it
has been demonstrated that these proposed methods produce acceptably accurate estimates
in many simulated cases, they do not, however, provide a theoretical analysis for estimating
accuracy nor the curvature of the output manifold in general cases, with the exception of
special cases such as elliptical distributions.

Recently, some works have focused on the theoretical analysis for manifold fitting. In
particular, Genovese et al. (2012b) and Genovese et al. (2012c) establish the upper bounds
on the Hausdorff distance between the output and latent manifold under various noise set-
tings, although they do not offer any practical estimators. Genovese et al. (2012a) proposes
an estimator which is computationally simple, and whose convergence is guaranteed but
its conclusions hold only when the noise is supported on a compact set. Genovese et al.
(2014) focuses on the ridge of the probability density introduced by Ozertem and Erdogmus
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(2011), and proposes a convergent algorithm. It is worth noting that the data in Genovese
et al. (2014) was assumed to be blurred by homogeneous Gaussian noise, an assumption
that is more general than that made in Genovese et al. (2012a). Boissonnat and Ghosh
(2014) proposes an algorithm based upon Delauney complexes, whose convergence was an-
alyzed by Aamari and Levrard (2018). Aamari and Levrard (2019) presented an algorithm
to estimate a point on the manifold, its tangent and second form. Based on these, they
approximated the latent manifold by a mere union of polynomial patches and gave conver-
gence rate for noise-free and tubular noise models. Aizenbud and Sober (2021) presents
an algorithm that showed convergence to the manifold and its tangent bundle, even with
tubular noise. However, none of the methods outlined above are guaranteed to output an
actual d-dimensional manifold with certain smoothness.

To overcome this issue, some studies on manifold fitting have sought to determine how
curved the output manifold is. In the spirit of Ozertem and Erdogmus (2011) and Genovese
et al. (2014), Fefferman et al. (2016) and Mohammed and Narayanan (2017) also took the
ridge set into consideration, the former focusing on theoretical analysis, the latter on prac-
tical algorithms. Specifically, rather than focusing on the probability density function, they
both chose to work with the approximate square-distance functions (asdf), approximating
the latent manifold by the ridge of the asdf. The theoretical bounds for the manifold fitting
have also been considered in Fefferman et al. (2016) and Mohammed and Narayanan (2017),
but for only noiseless data; that is, as long as the asdf meets certain regularity conditions,
the researchers show that the output of the algorithm is a manifold with bounded reach,
and the output manifold is arbitrarily close in Hausdorff to the latent one.

To deal with manifold fitting with noise, Fefferman et al. (2018) proposes a new approach
to fit a putative manifold under Gaussian noise. Unlike other methods, which use the entire
sample set, the method of Fefferman et al. (2018) involves subsampling first such that the
number of used samples can be bounded above by eD. Under this constraint, the noise is
supported on a bounded set with high probability. Given this, the application of Fefferman
et al. (2018) is feasible with the bounded noise although the constraint on the sample size
is problematic in that the upper bound does not go to zero even with a sufficient number of
available samples and the variance of Gaussian noise diminishes. Therefore, the problem is
not essentially addressed when the support of noise is unbounded and so creates room for
the manifold-fitting problem to arise, especially from the theoretical side.

1.2 Motivation

In this paper, we attempt to evaluate the convergence and smoothness of Mout. Of the
aforementioned works, it is those of Mohammed and Narayanan (2017) and Fefferman et al.
(2018) are most relevant to our study. This section explains these two methods geometrically
and analyzes their limitations, which impels us to establish a more accurate manifold-fitting
method.

The left panel of Figure 1 illustrates the method of Mohammed and Narayanan (2017),
whose essence is to define an approximate squared-distance function (asdf) to M and es-
timates M by the ridge set of the asdf. Specifically, for a given point x, the asdf at x is
defined as the weighted average of squared distances from x to the discs (the dashed lines)
centered at the sample points (the blue and red dots). The right panel of Figure 1 illustrates
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Figure 1: A toy example to illustrate the methods by Mohammed and Narayanan (2017)
(left panel) and Fefferman et al. (2018) (right panel), where the black curve is a
local part ofM, x is a point offM, and the dots xi and xj represent two samples
in the neighborhood of x. Unlike those in the right panel, the samples in the
left panel are onM, as Mohammed and Narayanan (2017) focus on the noiseless
case.

the method of Fefferman et al. (2018). Its key idea is to approximate the bias from x toM
for any arbitrary x and define the output manifold as points with zero bias. To obtain the
approximation of bias from x toM, Fefferman et al. (2018) calculates the weighted average
bias from x to the discs (the dashed lines) centered at the sample points, and projects the
average bias by the estimated orthogonal projection onto the normal space ofM at x∗ (the
gray solid line).

Due to the usage of discs centered at the sample points, the effectiveness of each method
depends on just how accurately these discs capture the local structure of the manifold.
However, if the sample points are significantly perturbed by unbounded noise and deviate
significantly from the latent manifold M, these discs also deviate far from M. Hence, in
this scenario with unbounded noise, the methods proposed by Mohammed and Narayanan
(2017) and Fefferman et al. (2018) may encounter difficulties in fitting a manifold.

Even if the sample points lie on the manifold, say xi ∈ M, the disc centered at xi
captures the local manifold at xi rather than the local manifold at x∗. The deviation
between xi and x∗ also introduces an approximation error in the distance/bias from x to
M. As shown in Figure 1, both the solid red line and the solid red arrow are shorter
than the distance/bias from x toM, and the average between the red and blue one cannot
address this issue.

The limitations of the two aforementioned methods suggest that estimating the manifold
based on discs centered at sample points may reduce the fitting accuracy, especially in the
scenarios with unbounded noise. It is this finding that compels us to invent a new manifold-
fitting method.
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1.3 Main contribution

From a statistical viewpoint, there is a pressing need for the development of a practical
estimator with theoretical bounds satisfying the following requirements simultaneously, and
which improves on the requirements of Fefferman et al. (2018):

• The support of noise is unbounded.

• The estimator shares a similar geometric property to M.

• For any arbitrary x ∈Mout, the distance between x andM is bounded above provided
N is sufficiently large and σ is sufficiently small. In particular, the distance goes to
zero as noise disappears.

• The smoothness of Mout is mathematically guaranteed.

In this paper, we propose a novel approximation f(x) to the bias from any point x to M
and fit the latent manifold M in the ambient space as the points with f(x) = 0, where 0
presents a zero vector. Practically, such an output manifold can be achieved by solving the
minimization ‖f(x)‖22 via gradient descent. This paper provides two main contributions in
this aspect, the first being the theoretical analysis satisfying the four requirements above
as follows:

• The noise is assumed to be drawn from the Gaussian distribution Gσ defined in (1.1).

• Any arbitrary neighborhood of Mout is a d-dimensional manifold.

• For any x ∈ Mout, d(x,M) ≤ O(σ) given a large-enough dataset. Thus, Mout

converges to M for an increasingly large sample size and diminishing noise.

• The twice difference of Mout is bounded above by O( 1√
σ

).

The second important contribution of this paper is the performance of our estimator in
practice. As illustrated in Figures 1 and 2, the bias from a point x to M is approximated
better than by the other two relevant methods. Numeric results in Section 5 demonstrate the
improved performance, which further suggests that our method outputs the approximated
manifold to the latent one.

1.4 Organization

The rest of the paper is organized as follows. Section 2 includes the formulation of our
approximationMout to the latent manifoldM . After that, the convergence and smoothness
of Mout are analyzed in Theorem 5 and Theorem 7, respectively. Section 3 studies the
function f defined in (2.6) and determines the properties of its kernel space, the first and
second derivatives. Based on these properties of f , the proofs of Theorem 5 and Theorem
7 are derived in Section 4 with numeric examples listed in Section 5 .
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2. Proposed method

2.1 Content and notations

Throughout this paper, the latent manifold is denoted as M and our approximation to M
is denoted as Mout. For a set A ⊂ RD and a point x ∈ RD, ΠAx denotes the projection of
x onto A, namely the nearest point in A to x. Hence ΠMx is the projection of x onto the
latent manifold. If there is no ambiguity, we might use x∗ instead of ΠMx for simplicity.
The distance between x and A, denoted by d(x,A), is the Euclidean distance between ΠAx
and x. For any x∗ ∈ M, Tx∗M denotes the tangent space of M at x∗ and Πx∗ denotes
the orthogonal projection onto the normal space of M at x∗. We will make frequent use of
the lower-cases c, c0, c1, etc. and upper-cases C,C0, C1 etc., in the rest of this paper with
the lower-cases denoting generic constants less than 1, while the upper-cases denote generic
constants greater than 1. Values of the generic constants may change from line to line. By
constants, we mean they are independent of the radius r, the standard deviation σ or x,
while the constants may depend on some other constants used to characterize the manifold,
such as the reach of M.

We denote BD(x, r) as the Euclidean ball in RD centered at x of radius r, which defines
a neighborhood of x. The index set Ix,r is defined as the indices of the sample points
in BD(x, r), and |Ix,r| denotes the cardinality of Ix,r. As given in (1.1), σ represents the
standard deviation of noise. Throughout this paper, we assume

r = O(
√
σ), σ < 1 (2.1)

without loss of generality, otherwise the data could be rescaled so that σ < 1 holds. Here
r = O(

√
σ) means that there exist constants c and C such that c

√
σ ≤ r ≤ C

√
σ. Noticing

σ < 1, we obtain

r ≤ C
√
σ < C. (2.2)

This means r can be bounded above by certain constant. In subsequent proofs, under the
premise that it does not affect the final precision of conclusive upper bound, we will relax
some r to C in order to simplify the proof.

The latent manifold M is supposed to be boundaryless, compact, d-dimensional, and
twice differentiable, with a reach bounded by τ > 0. The concept reach is a measure of the
regularity of the manifold, first introduced by Federer (Federer, 1959) as follows:

Definition 1 (Reach). Let M be a closed subset of RD. The reach of M, denoted by
reach(M), is the largest number τ to have the property that any point at a distance r < τ
from M has a unique nearest point in M.

An important understanding of reach is that it is a twice differentiable quantity if the
manifold is treated as a function. Specifically, if γ is an arc-length parametrized geodesic of
M, then for all t, ‖γ′′(t)‖ ≤ 1/τ according to Niyogi et al. (2008). As a twice differentiable
quantity, it is easy to understand that the reach describes how flat the manifold is locally.
For example, the reach of a sharp cusp is zero, and the reach of a linear subspace is infinite.
Thus, it is natural that the reach measures how close a manifold is to the tangent space
locally. The following proposition by Federer (1959) explains this phenomenon:
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Proposition 2.

reach(M)−1 = sup

{
2d(y, TxM)

‖x− y‖22
|x, y ∈M, x 6= y

}
(2.3)

We emphasize that if reach(M) > 0, the error between M and TxM at y is of a higher
order than ‖x − y‖2. Thus, in a small-enough neighbor of x, we can estimate M by TxM
with negligible error, which is the foundation of our approximation.

The approximationMout is defined using the noisy sample points {xi}Ni=1. The number
of sample points should be sufficiently large such that BD(x, r) contains enough sample
points. Proposition 3 claims the relationship between |Ix,r| and N .

Proposition 3. Suppose x satisfies d(x,M) ≤ cr with some c < 1. There exist constants
c′ and C such that |Ix,r| ≥ c′rdN with probability at least 1− C/

√
N .

Proof of proposition 3 is given in Appendix A.1. Based on this proposition, the re-
quirement on |Ix,r| can be transformed to the requirement on N for further analysis in
later sections. Specifically, N is required to be a sufficiently large quantity in the order of
O(r−(d+2)).

2.2 Definition of the approximated manifold

This section introduces a novel method for estimating the bias f(x) from a point x to the
latent manifold M, and defines the approximated manifold Mout as the points satisfying
f(x) = 0. Unlike the aforementioned methods, which rely on discs centered at sample points
to estimate the bias f(x), here we build upon the fact that a Riemannian manifold can be
locally treated as an affine space and calculate the bias from x to Tx∗M as an equivalent
measure of the bias f(x) from x to M. Thus, the key to addressing such a bias is to find
an affine space {x′ : Ψα

x(x′ − b)} approximating Tx∗M, where Ψα
x estimates the orthogonal

projection onto the normal space at x∗ and b estimates one points in Tx∗M.
In order to approximate the orthogonal projection onto the normal space of M at x∗,

Ψα
x is defined as the weighted average of {Pxi}i∈Ix,r , where Pxi is the orthogonal projection

perpendicular to the first d principal components in BD(xi, r
′). Mathematically, Pxi =

V⊥V
T
⊥ , where V⊥ is the orthogonal component of V and V is the D×d matrix whose columns

are the eigenvectors corresponding to the largest d eigenvalues of
∑

j∈Ixi,r′
(xj−xi)(xj−xi)T .

The radius r′ should be sufficiently large, so that the intersection of BD(xi, r
′) and M is

nonempty. Further analysis in Section 3.1 explains that we need r′ ≥ 2r.
As the weighted average of {Pxi}i∈Ix,r ,

Ψα
x = Πhi(Ax), Ax =

∑
i∈Ix,r

αi(x)Pxi . (2.4)

Here, Πhi(A) denotes the projection onto the span of the eigenvectors corresponding to the
largest D − d eigenvalues of A. Specifically, Πhi

(
A
)

= V V T , V is a D × (D − d) matrix
whose columns are the eigenvectors corresponding to the largest D − d eigenvalues of A.
Further, the weights αi : RD → R in (2.4) are defined as follows:

α̃i(x) =


(

1− ‖x−xi‖
2
2

r2

)β
, x ∈ BD(xi, r)

0, otherwise
, α̃(x) =

∑
i

α̃i(x), αi(x) =
α̃i(x)

α̃(x)
, (2.5)
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with β ≥ 2 a fixed integer guaranteeing f(x) in (2.6) to be twice differentiable.

Under the assumption that a manifold can be approximated well by an affine space
locally, samples in the neighborhood of x lie close to Tx∗M, with the exception of noise.
Therefore, a convex combination of these samples also lies close to Tx∗M. Thus, we can
estimate b using the average of sample points in the neighborhood of x. Recalling the
weights in (2.5), we formulate b =

∑
i∈Ix,r αi(x)xi as the weighted average of sample points

in the neighborhood of x. Then the bias from x to the space {x′ : Ψα
x(x′ − b)} is

f(x) : RD → RD, f(x) = Ψα
x

(
x−

∑
i∈Ix,r

αi(x)xi

)
. (2.6)

Finally, the approximation is defined as

Mout = {x : d(x,M) ≤ cr, f(x) = 0, c < 1}, (2.7)

that is, the points with zero bias. By Definition 11 of Fefferman et al. (2016), M̃ = {x :
d(x,M) ≤ cr} is a manifold. Restrict f to M̃. When 0 is regular, the preimage f−1(0) =
Mout ⊂ M̃ is a smooth submanifold. So we callMout as the approximated manifold in the
paper. Further characterization of the approximated manifold will be discussed in Theorem
4.

The definition of Mout is practical. Theorem 5 in the next section claims that Mout

approximates M in the order of O(r2). This means if we have an initial estimator of M
with error cr, then we could achieve a better estimator of M using the definition of Mout.
In practice, we solve the minimization ‖f(x)‖22 via the gradient descent method given the
initial estimator, and the output of the gradient descent method approximates M in the
order of O(r2) better than the initial guess.

The advantages of our method are twofold. First, we introduce Ψα
x directly, thus cap-

turing the local structure of manifold at x∗, while the aforementioned methods capture the
local structure of manifold near the sample points. Second, we approximate the manifold
using a space passing b instead of any sample point. Benefitting from the mutual offset of
noise, b hardly deviates far away from Tx∗M even if the noise is unbounded. As a result, we
can expect {x′ : Ψα

x(x′−b)} to be a better approximation to the local structure of manifold
at x∗, which guarantees the bias from x to {x′ : Ψα

x(x′−b)} is a better approximation to the
bias from x to M. The toy example in Figure 2 illustrates the superiority of our method.
The black arrow in Figure 2 is almost the bias from x toM, while both the average length
of the solid lines in the left panel of Figure 1 and the black arrow in the right panel of
Figure 1 are shorter than the ideal one.

2.3 Convergence and smoothness of the approximated manifold

In Theorem 4, we prove any arbitrary neighborhood ofMout is a d-dimensional manifold in
high probability. In Theorem 5, we characterize the convergence ofMout in the probability
δ0(1− δ)2, where we denote

δ0 = 1− d exp{−cr
d+2N

2 ln 2
} (2.8)
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Figure 2: A toy example to illustrate the methods in our method. Ψα
x is used to estimate

the orthogonal projection onto the normal space of M at x∗, the black dot b is
used to estimate a point in Tx∗M. Then the space {x′ : Ψα

x(x′ − b)}, illustrated
as the black dashed line, approximates Tx∗M, and the bias from x to the black
dashed line is the estimated bias from x to M, geometrically illustrated as the
black arrow.

for convenience. When N is sufficiently large as we set, δ0 is a high probability. Theorem 5
tells us that if r = O(

√
σ) is sufficiently small, Mout is a good estimator to M. Moreover,

Corollary 6 tells us that the approximated manifoldMout converges to the latent manifold
M as σ → 0.

Theorem 4. Given δ > 0 and any arbitrary x ∈ Mout, there exists ε such that Mout ∩
BD(x, ε) is a d-dimensional manifold with probability δ0(1− δ)2

(
1− (1− crd)N

)
.

Theorem 5. Given δ > 0, there exists a constant C such that d(x,M) ≤ Cr2 for any
arbitrary x ∈Mout with probability at least δ0(1− δ)2.

We point out that Theorem 5 holds assuming σ < 1 and r = O(
√
σ) as (2.1) claims. If

we further assume σ → 0, we achieve the following corollary:

Corollary 6. For any arbitrary x ∈Mout, d(x,M)→ 0 as σ → 0 with probability at least
δ0(1− δ)2.

Proof Given r = O(
√
σ), there exists C0 such that r = C0

√
σ. For any ε > 0, let σ = ε

CC2
0
,

and then d(x,M) ≤ Cr2 = CC2
0σ = ε.

Given x, y ∈ M, the fraction d(y, TxMout)/‖y − x‖22 characterizes the twice differen-
tiable quantity that controls the local flatness of Mout. Therefore, the lower bound of
d(y, TxMout)/‖y − x‖22 guarantees the smoothness of Mout. Recalling Proposition 2, such
a quantity is related to the reach of a manifold, which characterizes the smoothness of a
manifold.
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Theorem 7. Given δ > 0, there exists constant c0 < 1 and c < 1 such that

‖z − x‖22
d(z, TxMout)

≥ c0r

for any arbitrary x and z in Mout with probability at least δ2
0(1− δ)4

(
1− (1− crd)N

)
.

The proofs of Theorem 4, Theorem 5 and Theorem 7 are organized in the following way.
First we explore the properties of Pxi for given xi through Theorem 11 in subsection 3.1,
reveal the properties of weights {αi} through Proposition 12 and discuss the concentration
phenomenon of Gaussian noise through Lemma 13 in subsection 3.2. Based on the conclu-
sions above, we prove in Theorem 15 an upper bound on the approximation error of Ψα

x , as
a weighted sum of {Pxi}i∈Ix,r , to Πx∗ . Subsequently, in subsection 3.3 and subsection 3.4,
we obtain the upper bounds on ‖f(x)‖2 and the first and second derivative of f(x) through
Theorem 16, Theorem 17 and Theorem 19. Finally, the main conclusions, namely Theorem
4, Theorem 5 and Theorem 7, are proved in Section 4, using the upper bounds regarding
f(·) defined by (2.6). The dependency of the above theorems, lemmas, and propositions is
demonstrated in Figure 3.

Figure 3: The dependency of the core theorems, lemmas, and propositions.

3. Bounds regarding the function f

To analyze Ψα
x , we first explore the properties of Pxi , where xi is any arbitrary sample point

in BD(x, r). Next, properties of Ψα
x can be analyzed as the weighted average of {Pxi}i∈Ix,r .

Finally, we successively bound ‖f(x)‖2, the first derivative of f(x) and the second derivative
of f(x) above using bounds regarding Ψα

x .
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3.1 Properties of Pxi

To make the notations clearer, we replace xi with z in this section. Recalling the notations
in Section 2.1, z∗ is the closest point on M to z and Πz∗ is the orthogonal projection onto
the normal space of M at z∗. The aim of this section is to bound the error ‖Pz −Πz∗‖F .

Figure 4 illustrates the variables used for the discussion of Pz and the related proof. The
z (black dot) is an observed noisy point of the manifold M and the blue ball is BD(z, r′),
centered at z with radius r′. The subsequent proof requires BD(z, r′) ∩M 6= ∅, which is
equal to d(z,M) ≤ r′. Given d(x,M) ≤ cr and z ∈ BD(x, r), we have

d(z,M) ≤ ‖z − x∗‖2 ≤ ‖z − x‖2 + ‖x− x∗‖2 = ‖z − x‖2 + d(x,M) ≤ (c+ 1)r.

Therefore, for any r′ ≥ 2r, d(z,M) < r′. In this paper, we set r′ = 2r for convenience. The
zi (red dot) is a noisy sample located in BD(z, r′), satisfying zi = yi + ξi, z

∗
i = ΠMzi, and

pi is the projection of zi onto Tz∗M. The space T is the translation of Tz∗M passing z,

Figure 4: Diagram of variables used for the discussion of Pz.

and p′i is the projection of zi onto T .
Consider the symmetric matrix Λ = 1

|Iz,r′ |
∑

i∈Iz,r′
(pi− z∗)(pi− z∗)T . Since both pi and

z∗ are located in Tz∗M, the spanning space of Λ is contained in Tz∗M. Thus, rank(Λ) ≤
dim(Tz∗M) = d and thereby the (d+1)-th largest eigenvalue of Λ is 0. Setting columns of U
be the eigenvectors of Λ corresponding to the d largest eigenvalues, U is also a basis of Tz∗M.
Let U⊥ be the orthogonal complement of U , and we have Πz∗ = U⊥U

T
⊥ . Recalling Pz =

V⊥V
T
⊥ , where V⊥ is the orthogonal component of V and columns of V are the eigenvectors

corresponding to the d largest eigenvalues of

Λ̂ =
1

|Iz,r′ |
∑
i∈Iz,r′

(zi − z)(zi − z)T ,

we obtain

‖Pz −Πz∗‖F = ‖V⊥V T
⊥ − U⊥UT⊥‖F = ‖V V T − UUT ‖F ≤

2
√

2‖Λ− Λ̂‖F
λd

(3.1)

by the following Lemma:

12



Manifold Fitting under Unbounded Noise

Lemma 8. Let Λ, Λ̂ ∈ Rn×n be symmetric, with eigenvalues λ1 ≥ · · · ≥ λn and λ̂1 ≥
· · ·≥λ̂n respectively. Let 1 ≤ d ≤ n and assume λd > 0, λd+1 = 0. Let U , Û ∈ Rn×d be
eigenvectors corresponding to the first d eigenvalues of Λ and Λ̂, respectively. Then

‖UUT − Û ÛT ‖F =
√

2‖ sin θ(Û , U)‖F ≤
2
√

2‖Λ̂− Λ‖F
λd

by the Davis-Kahan sin θ theorem, where θ(Û , U) is the n× n diagonal matrix, whose diag-
onal comprises the principal angles between the column spaces of Û and U , and sin θ(Û , U)
is defined entrywise.

We require the upper bound on ‖Λ̂ − Λ‖F and the lower bound on the d-th eigenvalue
of Λ, deriving them both in Lemma 9 and Lemma 10 as follows:

Lemma 9. Suppose r′ = O(
√
σ) and d(z,M) ≤ cr′ with some c < 1. There exists C such

that ‖ 1
|Iz,r′ |

(∑
i∈Iz,r′

(zi − z)(zi − z)T −
∑

i∈Iz,r′
(pi − z∗)(pi − z∗)T

)
‖F is bounded above by

C

|Iz,r′ |
∑
i∈Iz,r′

(
‖ξi‖42 + ‖ξi‖32 + ‖ξi‖22 + r′‖ξi‖2

)
+ C

(
r′

3
+ r′‖z − z∗‖2 + ‖z − z∗‖22

)
.

Lemma 10. The d-th eigenvalue of 1
|Iz,r′ |

∑
i∈Iz,r′

(pi − z∗)(pi − z∗)T is bounded below by

λd ≥ cr′2, with probability δ0.

Proofs of Lemma 9 and 10 appear in Appendix A.2. Plugging the upper bound of Lemma
9 and the lower bound of Lemma 10 into (3.1), we can obtain the following theorem:

Theorem 11. Suppose r′ = O(
√
σ) and d(z,M) ≤ r′. For any given δ ,there exists C such

that the difference between Pz and Πz∗ is bounded by

‖Pz −Πz∗‖F ≤
C

r′2
1

|Iz,r′ |
∑
i∈Iz,r′

(
‖ξi‖42 + ‖ξi‖32 + ‖ξi‖22 + r′‖ξi‖2

)

+ C

(
r′ +

‖z − z∗‖2
r′

+
‖z − z∗‖22

r′2

)
, in probability δ0.

The term ‖z − z∗‖22 in Theorem 11 tells us that Pz cannot approximate Πz∗ well if z
is distant from M. When the sample size N is sufficiently large and the sample points
are blurred by Gaussian noise, there will always be several sample points that deviate far
away from the latent manifold. If xi represents such a sample point, given Theorem 11,
Pxi cannot effectively capture the local structure of the latent manifold. However, the next
section will explain how the error caused by Pxi can be eliminated when we calculate a
weighted average over {Pxi}i∈Ix,r , denoted as Ψα

x .

3.2 Properties of Ψα
x

This section evaluates how Ψα
x approximates Πx∗ using the upper bound of ‖Pxi−Πx∗i

‖F as
derived in Theorem 11. As the weighted average of {Pxi}i∈Ix,r , Ψα

x benefits from the mutual
offset of the Gaussian noise. To mathematically clarify this phenomenon, Lemma 13 below
bounds the weighted averages regarding ‖ξi‖2 above by the Berry-Esseen Theorem and the
properties of the weights {αi(x)} stated in Proposition 12.

13
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Proposition 12. For a point x satisfying d(x,M) ≤ cr, there exist constants c0 and c′0
such that

(i) α̃(x) is bounded below by c0|Ix,r|, with probability 1− C0/
√
|Ix,r|

(ii) α̃(x) is bounded below by a constant c′0 with probability 1− (1− crd)N = O(Nrd).

Lemma 13. Suppose d(x,M) ≤ cr with some constant c < 1 and r = O(
√
σ). For any

given δ, there exist constants C, c0 and n0 such that if N ≥ n0r
−d, then α̃(x) ≥ c0|Ix,r|

with probability at least (1− δ) and∑
i∈Ix,r

αi(x)‖ξi‖k2 ≤ Cσk and
1

|Ix,r|2
∑

i,j∈Ix,r

‖ξi‖s2‖ξi‖t2 ≤ Cσs+t (3.2)

hold for k, s, t ≤ 4 with probability at least (1− δ)2.

Lemma 14. Suppose x and y are two points on M , then

‖Π∗x −Π∗y‖2 ≤ ‖Π∗x −Π∗y‖F ≤ C
‖x− y‖2

τ
. (3.3)

The proof of Lemma 13 is shown in Appendix A.3. To evaluate how Ψα
x approximates

Πx∗ , we first evaluate how the tangent space changes when the point of tangency changes
as Lemma 14, which is also proved in Appendix A.3. Based on the theorem above and
lemmas, we obtain the following theorem to evaluate Ψα

x :

Theorem 15. Suppose d(x,M) ≤ cr with some constant c < 1 and r = O(
√
σ). For any

given δ, there exist constants C and n0 such that if N ≥ n0r
−d, then

‖Ψα
x −Πx∗‖2 ≤ ‖Ψα

x −Πx∗‖F ≤ Cr (3.4)

holds with probability δ0(1− δ)2.

Proof By definition of Ax,

‖Ax −Πx∗‖F =

∥∥∥∥ ∑
i∈Ix,r

αi(x)(Pxi −Πx∗i
) +

∑
i

αi(x)(Πx∗i
−Πx∗)

∥∥∥∥
F

≤
∑
i∈Ix,r

αi(x)‖Pxi −Πx∗i
‖F +

∑
i∈Ix,r

αi(x)‖Πx∗i
−Πx∗‖F . (3.5)

Setting z in Theorem 11 to be xi and replacing r′ by r′ = 2r, we obtain the upper bound
of ‖Pxi −Πx∗i

‖F with probability (1− δ)2. Plugging the upper bound into the first term on
the right-hand side of (3.5), we obtain∑
i∈Ix,r

αi(x)‖Pxi −Πx∗i
‖F ≤

C

r2

∑
i∈Ix,r

∑
j∈Ixi,2r

αi(x)

|Ixi,2r|

(
‖ξj‖42 + ‖ξj‖32 + ‖ξj‖22 + r‖ξj‖2

)

+ C

(
r +

∑
i∈Ix,r αi(x)‖xi − x∗i ‖2

r
+

∑
i∈Ix,r αi(x)‖xi − x∗i ‖22

r2

)
≤ C

r2

∑
i∈Ix,r

∑
j∈Ixi,2r

αi(x)

|Ixi,2r|

(
‖ξj‖42 + ‖ξj‖32 + ‖ξj‖22 + r‖ξj‖2

)

+ C

(
r +

∑
i∈Ix,r αi(x)‖ξi‖2

r
+

∑
i∈Ix,r αi(x)‖ξi‖22

r2

)
.

14
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Plugging the upper bound of
∑

i∈Ix,r αi(x)‖ξi‖k2 into the last formula leads to

∑
i∈Ix,r

αi(x)‖Pxi −Πx∗i
‖F ≤ C

(σ
r

+
σ2

r2
+ r
)
≤ Cr,

with probability δ0(1 − δ)2, where the last inequality holds given r = O(
√
σ). As for the

second term on the right-hand side of (3.5),

∑
i∈Ix,r

αi(x)‖Πx∗i
−Πx∗‖F ≤

C

τ

∑
i∈Ix,r

αi(x)‖x∗i − x∗‖2

≤ C

τ

∑
i∈Ix,r

αi(x)
(
‖x∗i − xi‖2 + ‖xi − x‖2 + ‖x− x∗‖2

)
≤ C r

τ
+
C

τ

∑
i∈Ix,r

αi(x)‖x∗i − xi‖2

≤ C r
τ

+ C
σ

τ
≤ C r

τ
.

where the first inequality is by Lemma 14, the second-to-last inequality holds given r =
O(
√
σ), and the last inequality holds by (2.2). Since Ψα

x is the closest (D−d)-rank projection
matrix to Ax, we have

‖Ψα
x −Ax‖F ≤ ‖Ax −Πx∗‖F ≤ Cr, with probability δ0(1− δ)2. (3.6)

Hence, ‖Ψα
x −Πx∗‖F ≤ ‖Ψα

x −Ax‖F + ‖Ax −Πx∗‖F ≤ Cr with probability δ0(1− δ)2.

3.3 A bound on f(x)

This section examines how f(x) approximates the bias from x to M, which is achieved by
calculating ‖f(x)‖2 for x ∈ M. If f approximates the bias well, such ‖f(x)‖2 should be
bounded above by a small value with x ∈M.

Theorem 16. Suppose x ∈ M and r = O(
√
σ). For any given δ, there exist constants C

and n0 such that if N ≥ n0r
−d, then ‖f(x)‖2 ≤ Cr2 with probability δ0(1− δ)2.

Proof It is clear that x = x∗ when x ∈ M. Accordingly, we use x instead of x∗ in the
following discussion for convenience. First, we bound the distance between

∑
i∈Ix,r αi(x)xi

15
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and TxM. By definition,

d
( ∑
i∈Ix,r

αi(x)xi, TxM
)

=

∥∥∥∥Π∗x

( ∑
i∈Ix,r

αi(x)xi − x
)∥∥∥∥

2

≤
∑
i∈Ix,r

αi(x)‖Π∗x(xi − x)‖2

≤
∑
i∈Ix,r

αi(x)‖xi − x∗i ‖2 +
∑
i∈Ix,r

αi(x)‖Π∗x(x∗i − x)‖2

≤
∑
i∈Ix,r

αi(x)‖ξi‖2 +
∑
i∈Ix,r

αi(x)
‖x∗i − x‖22

τ

≤ C1σ + C2

∑
i∈Ix,r

αi(x)
(‖x∗i − xi‖2 + ‖xi − x‖2)2

τ

≤ C1σ + C2
(σ + r)2

τ
,

where the second-to-last inequality holds by Lemma 13 with probability (1 − δ)2. The
parameter r is selected in the order of

√
σ, namelyC3 exists such that r = C3

√
σ > C3σ

since σ < 1. So (σ + r)2 < ( 1
C3

+ 1)2r2 and

C1σ +
C2

τ
(σ + r)2 ≤ C1r

2

C2
3

+
C2

τ
(

1

C3
+ 1)2r2 = Cr2.

Hence, we obtain d(
∑

i∈Ix,r αi(x)xi, TxM) ≤ Cr2.

We let a =
∑

i∈Ix,r αi(x)xi and b be the projection of a onto TxM. Then, we have

‖a− b‖2 = ‖Π∗x(a− b)‖2 = d

( ∑
i∈Ix,r

αi(x)xi, TxM
)
≤ Cr2.

According to the definition of f(x),

f(x) = Ψα
x(x− a) = Π∗x(x− b) + (Ψα

x −Π∗x)(x− b) + Ψα
x(b− a),

where Π∗x(x− b) = 0, since x = x∗ ∈ TxM and b ∈ TxM. Hence, we obtain

‖f(x)‖2 ≤ ‖Ψα
x −Π∗x‖F

(
‖x− a‖2 + ‖a− b‖2

)
+ ‖Ψα

x(a− b)‖2
≤ ‖Ψα

x −Π∗x‖F
(
‖x− a‖2 + ‖a− b‖2

)
+ ‖a− b‖2

≤ C1r × (r + r2) + C2r
2 ≤ Cr2,

where the second-to-last inequality holds by Theorem 11 with probability δ0 and the last
inequality holds by (2.2). In summary, ‖f(x)‖2 ≤ Cr2 with probability δ0(1− δ)2.
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3.4 A bound on the first and second derivative of f(x)

We now proceed to obtain an upper bound on ‖∂vf(x)‖2 with ‖v‖2 = 1, where

∂vf(x) = lim
t→0

f(x+ tv)− f(x)

t
,

for any v ∈ RD.

Theorem 17. Suppose d(x,M) ≤ cr and r = O(
√
σ). For any given δ, there exist constants

C and n0 such that if N ≥ n0r
−d,

‖∂vf(x)−Ψα
xv‖2 ≤ Cr, (3.7)

with probability δ0(1− δ)2.

The proof of Theorem 17 refers to Appendix A.4. This theorem claims the first derivative
of f(x) approximates Ψα

xv in the order of O(r). Taking v in Theorem 17 as e1, · · · , eD, we
achieve the following Corollary 18.

Corollary 18. Suppose d(x,M) ≤ cr and r = O(
√
σ). For any given δ, there exist

constants C and n0 such that if N ≥ n0r
−d,

‖Jf (x)−Ψα
x‖F ≤ Cr (3.8)

with probability δ0(1− δ)2.

Proof Let ei represent a D-dimensional vector where the i-th component is 1, and the
other components are 0. The Jacobian matrix of function f can be represented as

Jf (x) =
(
∂e1f(x), · · · , ∂eDf(x)

)
and Ψα

x =
(
Ψα
xe1, · · · ,Ψα

xeD
)
. Hence,

‖Jf (x)−Ψα
x‖F = ‖

(
∂e1f(x), · · · , ∂eDf(x)

)
−
(
Ψα
xe1, · · · ,Ψα

xeD
)
‖F

=

√√√√ D∑
i=1

‖∂eif(x)−Ψα
xei‖22 ≤

√√√√ D∑
i=1

(C2
1r

2) = C1

√
Dr = Cr.

The last inequality holds by Theorem 17, which concludes ‖Jf (x)−Ψα
x‖F ≤ Cr with prob-

ability δ0(1− δ)2.

We now proceed to obtain an upper bound on ‖∂v
(
∂uf(x)

)
‖2 with ‖v‖2 = ‖u‖2 = 1 in

Theorem 19. This theorem proves that the second derivative of f(x) is bounded above by a
certain constant, which indicates the smoothness of f(x). The proof of Theorem 19 refers
to Appendix A.5.

Theorem 19. Suppose d(x,M) ≤ cr with some constant c < 1 and r = O(
√
σ). For any

given δ, there exist constants C and n0 such that if N ≥ n0r
−d, then ‖∂v∂uf(x)‖2 ≤ C with

probability δ0(1− δ)2.
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4. Proofs of Theorem 4, Theorem 5 and Theorem 7

Theorem 4 claims that the intersection of Mout and the neighborhood of x ∈ Mout is a
d-dimensional manifold. To prove this conclusion, we first need to discuss the properties of
the neighborhood of x, as stated in Proposition 20.

Proposition 20. Let ε = min{
√

α(x)
|Ix,2r|2

r3

β , r} for given x, then

‖Ψα
x −Ψα

z ‖2 ≤ Cr, ∀z ∈ BD(x, ε)

with probability δ0(1− δ)2
(
1− (1− crd)N

)
.

The proof of Proposition 20 can be found in Appendix A.6. Based on Proposition 20, we
construct an auxiliary function h to further characterize the neighborhood of x and obtain
the proof of Theorem 4, as shown below:
Proof of Theorem 4 Let h(z) : BD(x, ε) ⊂ RD → RD−d, per

h(z) = V T
x f(z), (4.1)

where Vx is the factor of Ψα
x such that Ψα

x = VxV
T
x . Then h(z) = 0 if f(z) = 0. Assuming

there exists z such that h(z) = 0 but f(z) 6= 0, we obtain

‖Ψα
x −Ψα

z ‖2 = max
v 6=0

∥∥(Ψα
x −Ψα

z )v
∥∥

2

‖v‖2
≥
∥∥(Ψα

x −Ψα
z )f(z)

∥∥
2

‖f(z)‖2

=

∥∥Ψα
xf(z)−Ψα

z f(z)
∥∥

2

‖f(z)‖2
=

∥∥Vxh(z)− f(z)
∥∥

2

‖f(z)‖2
=

∥∥0− f(z)
∥∥

2

‖f(z)‖2
= 1.

However, ‖Ψα
x − Ψα

z ‖2 ≤ Cr with probability δ0(1 − δ)2
(
1 − (1 − crd)N

)
via Proposition

20, which is contradictory to ‖Ψα
x − Ψα

z ‖2 ≥ 1. Hence, f(z) = 0 if and only if h(z) = 0,
equivalently h−1(0) = f−1(0) in BD(x, ε), with probability δ0(1− δ)2

(
1− (1− crd)N

)
.

For z ∈ BD(x, ε),

Jh(z) = V T
x Jf (z)

= V T
x (Jf (z)− Jf (x)) + V T

x (Jf (x)−Ψα
x) + V T

x Ψα
x .

On the right hand side of the above equality, we have ‖Jf (x) − Ψα
x‖F ≤ Cr by Corollary

18, V T
x Ψα

x = V T
x and ‖Jf (z) − Jf (x)‖F ≤ C maxDi=1 ‖Jeif(z) − Jeif(x)‖2 ≤ C‖x − z‖2 ≤

Cε ≤ Cr, where the second inequality holds by Theorem 19, which implies

‖Jh(z)− V T
x ‖2 ≤ ‖Jh(z)− V T

x ‖F = ‖V T
x (Jf (z)− Jf (x)) + V T

x (Jf (x)−Ψα
x)‖F ≤ Cr.

Hence, the maximal difference between the singular values of Jh(z) and V T
x is bounded by

Cr. Let σ1 ≥ · · · ≥ σD−d be the singular values of Jh(z). We obtain |σD−d − 1| ≤ Cr since
the singular values of V T

x are 1, which implies σD−d ≥ 1−Cr and rank
(
Jh(z)

)
= D− d for

any z ∈ BD(x, ε). This means the rank of h at z equals D − d for any z ∈ BD(x, ε), and
thus h−1(0) is a d-dimensional submanifold of BD(x, ε) ⊂ RD. The equivalence between
h−1(0) and f−1(0) in BD(x, ε) guarantees that f−1(0) is also a d-dimensional submanifold
of BD(x, ε) ⊂ RD.
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The above proof is based on Proposition 20, Corollary 18 and Theorem 19, where Propo-
sition 20 is proved based on Theorem 15 and Proposition 12(ii), and Corollary 18 is proved
based on Theorem 17. Noting that Theorem 15, Theorem 17 and Theorem 19 are valid
when Lemma 13 and Theorem 11 hold, we obtain

P
(
Mout ∩BD(x, ε) is a d−dimensional manifold

)
≥ P

(
Proposition 12(ii), Lemma 13 and Theorem 11 hold for x

)
≥ δ0(1− δ)2

(
1− (1− crd)N

)
.

Proof of Theorem 5 For any fixed x ∈Mout, we let Vx ∈ RD×(D−d) denote the orthonor-
mal matrix such that Ψα

x = VxV
T
x , and let Ux denote the orthogonal complement of Vx.

Then, we define
F (z) = f(z) + UxU

T
x z.

Let x∗ be the projection of x onto M, as done previously, Πx∗ = V∗V
T
∗ , and U∗ be the

orthogonal complement of V∗. The difference ‖F (x∗)− F (x)‖2 can be evaluated as

‖F (x∗)− F (x)‖2
=‖f(x∗) + UxU

T
x x
∗ − f(x)− UxUTx x‖2

=‖f(x∗) + UxU
T
x x
∗ − UxUTx x‖2

≤‖f(x∗)‖2 + ‖(UxUTx − U∗UT∗ )(x− x∗)‖2 + ‖U∗UT∗ (x− x∗)‖2
=‖f(x∗)‖2 + ‖(Ψα

x −Πx∗)(x− x∗)‖2 + ‖U∗UT∗ (x− x∗)‖2
≤‖f(x∗)‖2 + ‖Ψα

x −Πx∗‖F ‖x− x∗‖2 + ‖U∗UT∗ (x− x∗)‖2
≤Cr2

The second equality holds because f(x) = 0 for x ∈ Mout while the last inequality holds
because ‖f(x∗)‖2 ≤ Cr2 via Theorem 16, ‖Ψα

x − Πx∗‖F ≤ Cr via Theorem 15, ‖x− x∗‖ =
d(x,M) ≤ cr via the definition of Mout, and U∗U

T
∗ x = U∗U

T
∗ x
∗, since x∗ is the projection

of x onto Tx∗M.
The Jacobian matrix of F at z = x, denoted by JF (x) for simplicity, is

JF (x) = Jf (x) + UxU
T
x = ID +

(
Jf (x)−Ψα

x

)
.

By Corollary 18, each entry of the matrix Jf (x)−Ψα
x is bounded above by Cr. Hence, we

obtain
JF (x) = ID +O(r),

which means that JF (x) approximates ID with precision O(r) and JF (x) is invertible.
Moreover, ‖JF (x)‖F ≤ C(1 + r) and its inversion is ‖J−1

F (x)‖F ≤ C(1 + r).
The changing rate of JF can also be bounded as follows: supposing x′ and x′′ are two

arbitrary points, we have

‖JF (x′)− JF (x′′)‖F = ‖Jf (x′)− Jf (x′′)‖F ≤ C‖x′ − x′′‖2 (4.2)
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by the upper bound on the second derivative of f(x) in Theorem 19.

Based on the conclusions that ‖F (x)−F (x∗)‖2 ≤ Cr2, JF (x) = ID+O(r), and ‖JF (x′)−
JF (x′′)‖F ≤ C‖x′−x′′‖2, we could bound ‖x−x∗‖2 via Theorem 2.9.4 (the inverse function
theorem) in Hubbard and Hubbard (2001). Specifically,

‖x− x∗‖2 ≤ Cr2.

The above proof is based on Theorem 15, Theorem 16, Corollary 18 and Theorem 19,
which are valid when Lemma 13 and Theorem 11 hold. Hence, the conclusion ‖x− x∗‖2 ≤
Cr2 is drawn with probability δ0(1− δ)2.

To prove the smoothness of the estimated manifold Mout, as stated in Theorem 7, we
construct the following two auxiliary functions and clarify their properties.

Proposition 21. For any fixed point x ∈ Mout, set Wx to be the basis of the spanning
space of Jf (x)T and

g(z) = W T
x f(z). (4.3)

The following two statements

(i) g is a function from RD to RD×(D−d)

(ii) Given z ∈ BD(x, rτ), g(z) = 0 if and only if f(z) = 0

hold simultaneously with probability at least δ2
0(1− δ)4

(
1− (1− crd)N

)
.

Proposition 21 claims that f−1(0) and g−1(0) describe the same set in the neighborhood
of x whose proof can be found in Appendix A.6. By Wx, we reset the coordinate system for
g. Specifically, the rows of Jf (x) are orthogonal to the contour surface at x, and Wx is also
the basis of the normal space ofMout at x. Accordingly, we set the first d coordinates as the
basis of TxMout and the last D − d coordinates as the columns of Wx. In this coordinate
system, we define an implicit function φ : Rd → RD−d based on g(·) using the implicit
function theorem, such that

(
ζ;φ(ζ)

)
maps ζ ∈ TxMout to a point on the manifold Mout.

Here, we let (η; ζ) denote the concatenation of column vectors η and ζ. The upper bound
on the first and second derivatives of φ is given in Lemma 22, with its proof appearing in
Appendix A.6.

Lemma 22. Suppose function g is defined as (4.3). The implicit function φ : Rd → RD−d
satisfying g

(
·, φ(·)

)
= 0 exists, and its first and second derivatives are bounded above by

∂sφ(ζ) ≤ C‖
(
ζ;φ(ζ)

)
− x‖2, ∂t∂sφ(ζ) ≤ C,

with probability at least δ0(1− δ)2
(
1− (1− crd)N

)
, for any ‖s‖2 = ‖t‖2 = 1.
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Proof of Theorem 7 Let x and z be two points onMout, and TxMout be the tangent space
to Mout at x. The proof is conducted with ‖z − x‖2 > rτ and ‖z − x‖2 ≤ rτ , respectively.
First, when ‖z − x‖2 > rτ ,

‖z − x‖22
d(z, TxMout)

≥ rτ (4.4)

holds because ‖z − x‖2 ≥ d(z, TxMout). Second, when ‖z − x‖2 ≤ rτ , we have g(z) =
f(z) = g(x) = f(x) = 0 by Proposition 21 with probability δ2

0(1− δ)4
(
1− (1− crd)N

)
, since

x and z are on Mout. Let ζx and ζz denote the first d coordinates of x and z, respectively.
We have z =

(
ζz;φ(ζz)

)
, x =

(
ζx;φ(ζx)

)
, ∂sφ(ζz) ≤ C‖z − x‖2 and ∂t∂sφ(ζz) ≤ C with

probability at least δ0(1− δ)2 by Lemma 22. So,

d(z, TxMout) = ‖φ(ζz)− φ(ζx)‖2
≤ C‖z − x‖2‖ζz − ζx‖2 + C‖ζz − ζx‖22
≤ C‖z − x‖22 + C‖z − x‖22 ≤ C‖z − x‖22.

As a result,
‖z − x‖22

d(z, TxMout)
≥ ‖z − x‖22
C‖z − x‖22

=
1

C
:= c0.

Combined with (4.4), we complete this proof.

The above proof requires Proposition 21 and Lemma 22, which are valid when Theorem
4 and Theorem 5 hold simultaneously for x and when Theorem 15 holds for z. Given
the dependency between the theorems as shown in Figure 3, we establish that the above
theorems hold when Lemma 13 and Theorem 11 simultaneously hold for x, z, and when
Proposition 12(ii) holds for x. Hence, we have

P
( ‖z − x‖22
d(z, TxMout)

≥ c0r
)

≥ P
((

Proposition 12(ii) holds for x
)
∩
(
Lemma 13 and Theorem 11 hold for x, z

))
≥ δ2

0(1− δ)4
(
1− (1− crd)N

)
.

5. Experimental Results

This section comprises two parts. The first part provides numerical comparisons of the
methods of Mohammed and Narayanan (2017), Fefferman et al. (2018), and Aizenbud and
Sober (2021). Further, we apply relevant methods on several known manifolds, illustrate
the output manifolds, and calculate the Hausdorff distances between the output and latent
manifolds. In the second part, we focus on real applications, and use our method to denoise
facial images sampled from a lengthy video recording. The results of our method are then
compared to the findings of each of the other aforementioned methods.
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Algorithm 1: Project x onto Mout

Input: a point x, noisy data X = [x1, · · · , xN ], bandwidth parameters r and r′, a
step length parameter a, a tolerance ε, and the maximal number of iteration T .

Output: projection x̃ of x onto Mout.

1. Calculate Pxi = I − V V T for each xi ∈ X, where V is the D × d matrix whose
columns are the eigenvectors corresponding to the largest d eigenvectors of∑

j∈Ixi,r′
(xj − xi)(xj − xi)T .

2. Set t = 1.

(1). Calculate α̃i(x) and αi(x) for i ∈ Ix,r by (2.5).

(2). Plug {α̃i(x), αi(x), Pxi}i∈Ix,r into (B.1) to obtain the gradient grad(x) of
‖f(x)‖22.

(3). Update t = t+ 1 and x = x− a · grad(x).

(4). Repeat (1) to (3) until the tolerance condition ‖f(x)‖22 ≤ ε or the maximal
iteration T is met.

3. Output x̃ = x.

Implementation: the MATLAB codes, together with all numerical examples used
in this paper, are available at https://zhigang-yao.github.io/research.html which
contains a GitHub link under the code tap. We have also implemented the related methods
from Mohammed and Narayanan (2017) and Fefferman et al. (2018), since the authors of
both papers have not provided implementation due to the nature of their work having been
purely abstract.

5.1 Simulation

As explained in Subsection 1.2, by removing the unreliable discs which centered at the
sample points as in Mohammed and Narayanan (2017) and Fefferman et al. (2018), one
would expect an improved performance compared to these two methods. Assuming the
data points are sampled from a tubular neighborhood, Aizenbud and Sober (2021) denoises
the sample points iteratively using a local polynomial regression. As the degree increases,
polynomial regression fits a manifold better when the noise is limited but on the other hand
a polynomial regression exhibits sensitivity once noise increases. As a method designed for
Gaussian noise, our method is expected to be more robust as noise increases. To support this
claim, we test methods in Mohammed and Narayanan (2017) (marked by km17), Fefferman
et al. (2018) (marked by cf18), and Aizenbud and Sober (2021) with polynomial degree 1
and 2 (marked by ya21(deg=1) and ya21(deg=2)) on manifolds with both constant and
inconstant curvature, namely: a circle embedded in R2, a sphere embedded in R3, and a
torus embedded in R3. To ensure a traceable comparison, all the tests are conducted in the
following way, similar to that of Mohammed and Narayanan (2017):
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• Sample N points from the latent manifold, blur the points with Gaussian noise defined
in (1.1) with given σ, and use the noisy data X = [x1, · · · , xN ] to implicitly construct
output manifolds.

• Initialize a collection of points P = [p1, · · · , pN0 ] around the latent manifold.

• Project each pi to the constructed output manifolds via km17, cf18, ya21(deg=1),
ya21(deg=2)) and our method, respectively. We will then obtain P̃ as the projection
of P for each method.

• Calculate the Hausdorff distance between each P̃ and M to estimate the Hausdorff
distance between the corresponding Mout and M.

As projections, points in P̃ lie on the corresponding Mout, and the Hausdorff distance
H(P̃ ,M) could estimate H(Mout,M) when P̃ are dense enough. This motivates us to
evaluate the approximation error of Mout to M by H(P̃ ,M). To project a point p onto
a manifold defined by (2.7), we design algorithm 1. Taking x = p and f in algorithm 1 as
(2.6), we could project p onto our output manifold. It should be noted that the difficulty of
calculating such a gradient lies in calculating a gradient of orthogonal projection, which can
be addressed, according to Shapiro and Fan (1995). Detailed formula refers to Appendix
B. Mohammed and Narayanan (2017) suggested a subspace-constrained gradient descent
algorithm to project a point ontoMout constructed by km17. Thus, we adopt this algorithm
to implement km17 in this simulation. Although Fefferman et al. (2018) did not consider
the issue, we nevertheless implement their method too via algorithm 1, treating f(x) as the
approximated bias at x defined by Fefferman et al. (2018).

The details of this simulation are as follows: we uniformly sample N points denoted
by y1, · · · , yN from each target manifold and i.i.d. sample ξ1, · · · , ξN from a Gaussian
distribution (1.1) with a given standard derivation σ. Then, the noisy data X = {xi}Ni=1

is constructed by xi = yi + ξi. The initial points P are sampled from the tube centered
at M with radius 1

2

√
σ
D , so that d(pi,M) ≤

√
σ for each pi. According to Theorem 5,

d(p̃i,M) ≤ O(σ), which means the output points should be much closer to the latent
manifold than the initial points. Again, we take N0 = N initial points for each test in the
simulation.

To implicitly construct the output manifolds, the methods–km17, cf18, and our method,each
require a bandwidth parameter r. According to the theoretical analysis, r = O(

√
σ). So

we take r = λ
√
σ in this simulation, where λ is tuned in a large range for each method and

each σ. All the results reported in this section are the ones using the best λ. The method
ya21 also requires a bandwidth parameter h, which is again selected as the best one tuned
from a large range. In constructing α̃i(x), our method requires β ≥ 2. We take β = d + 2
in the simulation, as Fefferman et al. (2018) did.

5.1.1 Manifold with constant curvature

This part tests the manifold fitting methods for the circle in R2 and the sphere embedded
in R3. For the circle, we set N = N0 = 300, while for the sphere, we set N = N0 = 1000.
The different sample-size settings guarantee comparable density in each case, as Figure 5
illustrates that the P̃ (black dots) and their projection onto M (red dots) obtained by our
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Figure 5: The performance of our method, km17, cf18, ya21(deg=1) and ya21(deg=2) when
fitting a circle (top row) and a sphere (bottom row), where black points represent
points in P̃ (black dots) and red points represents their projections onto M.

method, cf18, cf18, ya21(deg=1) and ya21(deg=2), from left to right. The black dots and
red dots can be treated as the discretized versions of Mout and M, respectively. Thus,
a larger overlap of the two sets of dots means the manifold is better fitted. For the circle
embedded in R2, we show the entire space in the left column, while for the sphere embedded
in R3, we show the view from the positive z axis. Figure 5 shows that km17 clearly performs
worse than the other methods in terms of fitting error. From the two estimated circles by
ya21(deg=1) and ya21(deg=2), we observe that there are sharp corners – both at the top
left and at the bottom right – an observation that confirms that the estimator by ya21 is
not smooth. From the right edge of the circle and the sphere, we can also observe that our
method preforms slightly better than cf18 in this experiment.

To confirm the superiority of our method, we repeat each test for 20 trials, and list the
results of H(P̃ ,M) using the different methods in Figure 6. Generally speaking, our method
outperforms cf18, km17 and ya21(deg=1) in the compared cases and although ya21(deg=2)
performs slightly better than our method in instances of very low noise, it is much more
sensitive than our method. As the σ increases, ya21(deg=2) fails to outperform other
methods. From Figure 6, H(M,Mout) = O(σ) for our method, which supports Theorem
5.

5.1.2 Manifold with inconstant curvature

We also implement the compared methods in the torus case, which is a type of manifold
with inconstant curvature. Figure 7 illustrates the case with N = N0 = 800 and σ = 0.04,
and the torus embedded in R3 is shown from the positive z axis. Here, the sample points in
P̃ are marked by black dots and their projection ontoM are marked by red dots. The five
subfigures are obtained from our method, cf18, km17, ya21(deg=1) and ya21(deg=2), from
left to right. From the top and right edges of the torus, we can observe that our method
performs better than both cf18 and km17. From the fourth subfigure, we can identify
a clear gap between the red and black dots around the edge of the torus, which means
ya21(deg=1) failed to fit these points but using a second degree polynomial, ya21(deg=2)
achieves a better fitting as the right subfigure shows.
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Figure 6: The Hausdorff distance of fitting a circle (top row) and a sphere (bottom row) with
σ = 0.02 (left column), σ = 0.04 (middle column) and σ = 0.06 (right column)
using ya21(deg=2), our method, ya21(deg=1), cf18 and km17 respectively.

Figure 7: The performance of our method, km17, cf18, ya21(deg=1) and ya21(deg=2) when
fitting a torus with N = N0 = 800 and σ = 0.04, where black points represent
points in P̃ (black dots) and red points represent their projections onto M.

We also repeat each test for 20 trials and list the results of H(P̃ ,M) using the different
methods shown in Figure 8. When σ = 0.02 and σ = 0.04, our method performs better
than cf18, km17 and ya21(deg=1) but as σ increases to 0.06, the fitting problem becomes
more difficult and the performance of km17, cf18 and our method are similar, which fur-
ther demonstrates the sensitivity of ya21(deg=2). When σ is small and the sample size is
adequate, ya21(deg=2) outperforms the other methods but when the sample size decreases
and σ increases, the performance of ya21(deg=2) deteriorates rapidly.

5.2 Facial image denoising

This subsection considers a concrete case - denoising facial images selected from the video
database in Happy et al. (2012). We select 1,000 images of an individual turning his head
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Figure 8: The Hausdorff distance of fitting a torus given 500 (top row) and 1000 (bottom
row) samples with σ = 0.02 (left column), σ = 0.04 (middle column) and σ = 0.06
(right column) using ya21(deg=2), our method, ya21(deg=1), cf18 and km17
respectively.

around, then blurring those images via a Gaussian distribution with a different standard
derivation σ. In this experiment, σ is set to be the average of all pixels in 1,000 images
multiplied by ρ = 0.2, 0.3, or 0.4. The size of each facial image is 80 × 80, which means
D = 6400. The dimension d of the latent manifold is tuned from {1, 5, 10, 15, 20, 50, 75, 100}
for each method and we choose d = 10 because of its outperformance.

From the 1,000 facial images, we select 5 with different head orientations. The top
row of Figure 9 displays these five original images, while the second row of Figure 9 shows
these five images blurred, with ρ = 0.3. The goal of this experiment is to denoise these
five blurred images by projecting them to the manifold learnt by the remaining 995 blurred
images, which are treated as the noisy samples. To achieve the denoising, we use km17,
cf18, ya21(deg=1), ya21(deg=2) and our method to construct the output manifold with
the 995 noisy samples, and project the five tested images to each output manifold. When
the output manifold correctly fits the latent one, projecting blurred images to the output
manifold denoises these facial images. In this experiment, we take β = 2 for our method to
construct α̃i(x). If cf18 uses α̃i(x) as Fefferman et al. (2018) has suggested, it would not
work quite satisfactorily, because of the over-large power d + 2 rather than β. Therefore,
we take the same α̃i(x) for cf18 and our method to make the results comparable.

The last three rows of Figure 9 show the denoised images obtained by km17, cf18,
ya21(deg=1), ya21(deg=2) and our method, respectively. The first and third facial images
were not recovered by km17. Although the faces in the other three images obtained by
km17 can be distinguished, they are still very noisy. Cf18 could not recover the third image
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Figure 9: Performance of facial image denoising with ρ = 0.3. The first row consists of orig-
inal images while the second row consists of blurred images. The third to seventh
rows contain deblurred images using km17, cf18, ya21(deg=1), ya21(deg=2) and
our method, respectively.
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either, although the other four images obtained by cf18 are better than the ones obtained
by km17. Both ya21(deg=1) and ya21(deg=2) can recover these five faces. However, the
faces obtained by ya21(deg=2) are still somewhat fuzzy, compared with the ones obtained
by ya21(deg=1) and our method. Our method recovered all the five faces, with the third
face of much better quality than the faces from km17 and cf18.

The results with the settings ρ = 0.2 or ρ = 0.4 are listed in Figure 10 and Figure 11
(Appendix C). When we take ρ = 0.2, the results of all three methods provide fairly good
results. However, the results from km17 are somewhat noisy, with the obtained faces darker
than the original ones. When ρ = 0.4, km17 is barely able to recover the faces, cf18 fails at
the first and third ones, but our method can still provide acceptable faces.

6. Discussion

We have proposed a new output manifold Mout to fit data collection with Gaussian noise.
The theoretical analysis ofMout has two main components: (1) the upper bound on d(x,M)
for arbitrary x, which guaranteesMout approximatesM well, and (2) the upper bound on
the second-order difference of Mout, which guarantees the smoothness of Mout.

To demonstrate the contribution of this paper, we compared our theoretical results to
relevant works presented in Mohammed and Narayanan (2017) and Fefferman et al. (2018).
All three of these works aim to fit data collection by a smooth manifold, while the difference
among these works lies in the assumptions about noise. Mohammed and Narayanan (2017)
requires the data to be noiseless, which is the most strict assumption of the three. As
mentioned in the Introduction, Fefferman et al. (2018) essentially requires the noise of data
to be bounded, that is, the data collection X satisfying H(X,M) ≤ O(r2), where H(·, ·)
denotes the Hausdorff distance. If the noise of data obeys a Gaussian distribution, the
researchers would select a subset from the entire dataset, assume the noise of the subset is
bounded, and implement their proof on this subset of data. However, their sample selection
step imposes a lower bound on r, meaning that the upper bound of H(M,Mout) cannot
tend to 0. This paper, therefore, proposes a method to address the problem of Gaussian
noise, which is commonly assumed but unsolved in relevant works. Unlike the bounded
noise, X with Gaussian noise are not required to satisfy H(X,M) ≤ O(r2), which increases
the difficulty of manifold fitting.

According to the discussion in Subsection 1.2 and the experiment results, our method
could achieve a smaller approximating error than the methods presented in Mohammed
and Narayanan (2017) and Fefferman et al. (2018). One possible reason is that we use the
weighted average

∑
i∈Ix,r αi(x)Pxi to estimate Πx∗ rather than using each Pxi separately.

To explain this claim, we consider the following expression:∑
i∈Ix,r

αi(x)Pxi −Πx∗=
∑
i∈Ix,r

αi(x)(Pxi −Πx∗i
)+
( ∑
i∈Ix,r

αi(x)Πx∗i
−Πx∗

)
. (6.1)

For certain “symmetric” manifolds, the second term in the right hand side of (6.1) might
be much closer to zero matrix than (Πx∗i

−Πx∗).
A circle may be considered as an example. Suppose x, x1, and x2 are points on the

circle satisfying x1−x = x−x2; then, the average of orthogonal projections onto the normal
spaces at x1 and x2 equals the orthogonal projection onto the normal space at x, while the
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projection onto the normal space at x1 (or x2) differs from that at x with an error in the
order of ‖x− x1‖2 (or ‖x− x2‖2) by Lemma 14.

This phenomenon illustrates that the average of {Pxi}i∈Ix,r approximates Ψα
x better

than each Pxi for certain manifolds. We benefit from this fact by using
∑

i∈Ix,r αi(x)Pxi
to construct our output manifold, while Mohammed and Narayanan (2017) and Fefferman
et al. (2018) use each Pxi separately instead. Characterizing the “symmetric” property
mentioned above and using this property in the methodology of manifold fitting is an
attractive and promising topic, and our work on it will continue.
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Appendix A. Proofs

A.1 Proof of Proposition 3

Lemma 23. If d(x,M) ≤ cr with some c < 1 and c1 satisfies c < c1 ≤ 1, then there exists
a constant c′ such that P(i ∈ Ix,c1r) ≥ c′rd.

Proof Setting c2 be a constant satisfying c < c2 < c1, then

P(i ∈ Ix,c1r) ≥ P
(
yi ∈M∩BD(x, c2r), ‖ξi‖2 ≤ (c1 − c2)r

)
= P

(
yi ∈M∩BD(x, c2r)

)
P
(
‖ξi‖2 ≤ (c1 − c2)r

)
.

In order to bound P(i ∈ Ix,c1r) below, we bound the two probability expressions P(yi ∈
M ∩ BD(x, c2r)) and P(‖ξi‖2 ≤ (c1 − c2)r), respectively. Since d(x,M) ≤ cr < c2r, there
exists c3 such that

P
(
yi ∈M∩BD(x, c2r)

)
=

Vol
(
M∩BD(x, c2r)

)
Vol(M)

= c3r
d.

By the assumptions in (2.1), there exists 0 < c4 < 1 satisfying r ≥ c4
√
σ ≥ c4σ, which leads

to r/σ ≥ c4 and

P
(
‖ξi‖2 ≤ (c1 − c2)r

)
= P

(
‖ξi‖22
σ2
≤ (c1 − c2)2r2

σ2

)
≥ P

(
‖ξi‖22
σ2
≤ (c1 − c2)2c2

4

)
:= c5.

Since ‖ξi‖22/σ2 obeys Chi-square distribution and the constant (c1−c2)2c2
4 > 0, c5 is positive.

Calculating the product of P
(
yi ∈M∩BD(x, c2r)

)
and P

(
‖ξi‖2 ≤ (c1 − c2)r

)
, we have

P(i ∈ Ix,c1r) ≥ P
(
yi ∈M∩BD(x, c2r)

)
P
(
‖ξi‖2 ≤ (c1 − c2)r

)
≥ c3c5r

d = c′rd

which, completes this proof.

Proof of Proposition 3 Setting c1 = 1 in Lemma 23, we obtain P(i ∈ Ix,r) ≥ c′rd. Hence,
whether i ∈ Ix,r or not, can be treated as a Bernoulli distribution with the expectation of
c′rd. Applying the Berry-Esseen theorem to the N Bernoulli trials, there exists c′ < 1 such
that |Ix,r| ≥ c′rdN with probability 1− C/

√
N .

A.2 Proof of Lemma 9 and Lemma 10

The following proof is derived from the notations illustrated in Figure 4 and the settings
σ < 1, r′ = 2r and r = O(

√
σ), which imply that there exist constants C and C ′ independent

on σ such that r < C and r′ < C ′ by (2.2).
Proof of Lemma 9 Let pi−z∗ = qi; then, p′i−z = pi−z∗ = qi. Considering zi−z = zi−p′i+
p′i−z = zi−p′i+qi := δi+qi, we can rewrite

∑
i∈Iz,r′

(zi−z)(zi−z)T−
∑

i∈Iz,r′
(pi−z∗)(pi−z∗)T

as ∑
i∈Iz,r′

qiδ
T
i + δiq

T
i + δiδ

T
i . (A.1)
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To begin with, we bound ‖δi‖2. Recalling that the projection onto the normal space at
z∗ is Πz∗ ,

‖δi‖2 = ‖Πz∗(zi − z)‖2 ≤ ‖Πz∗
(
(zi − z∗i ) + (z∗i − z∗) + (z∗ − z)

)
‖2

≤ ‖Πz∗(z
∗
i − z∗)‖2 + ‖zi − z∗i ‖2 + ‖z∗ − z‖2

≤ ‖z
∗
i − z∗‖22
τ

+ ‖zi − z∗i ‖2 + ‖z − z∗‖2

≤ (‖z∗i − zi‖2 + ‖zi − z‖2 + ‖z − z∗‖2)2

τ
+ ‖zi − z∗i ‖2 + ‖z − z∗‖2.

The last but one inequality holds in accordance with Proposition 2. As established previ-
ously, each zi is generated as yi + ξi with yi ∈ M and ξi ∼ N(0, σ2ID). Then, ‖ξi‖2 =
‖zi− yi‖2 ≥ ‖zi− z∗i ‖2 since z∗i is the projection of zi ontoM. Thus, ‖δi‖2 can be bounded
by

‖δi‖2 ≤
(‖ξi‖2 + r′ + ‖z − z∗‖2)2

τ
+ ‖ξi‖2 + ‖z− z∗‖2 ≤ C1

(
‖ξi‖22 + ‖ξi‖2 + r′

2
+ ‖z− z∗‖2

)
.

The last inequality is achieved by replacing certain ‖z − z∗‖2 by its upper bound r′ and
replacing certain r′ by a constant independent on σ , since r′ < C ′ by r′ = 2r and (2.2).
Considering the average over Iz,r′ , we obtain

1

|Iz,r′ |
∑
i∈Iz,r′

‖δi‖2 ≤ C1

(
ψ2 + ψ1 + r2 + ‖z − z∗‖2

)
,

and

1

|Iz,r′ |
∑
i∈Iz,r′

‖δi‖22 ≤ C2

(
ψ4 + ψ3 + ψ2 + rψ1 + r4 + r2‖z − z∗‖2 + ‖z − z∗‖22

)
.

where ψk := 1
|Iz,r′ |

∑
i∈Iz,r′

‖ξi‖k2, the above bounds are then plugged into the bound of (A.1)

as follows:

‖ 1

|Iz,r′ |
( ∑
i∈Iz,r′

(zi − z)(zi − z)T −
∑
i∈Iz,r′

(pi − z∗)(pi − z∗)T
)
‖F

≤‖ 1

|Iz,r′ |
∑
i∈Iz,r′

(
qiδ

T
i + δiq

T
i + δiδ

T
i

)
‖F

≤ 1

|Iz,r′ |
∑
i∈Iz,r′

(
2‖qi‖2‖δi‖2 + ‖δi‖22

)
≤ 1

|Iz,r′ |
∑
i∈Iz,r′

(
2r′‖δi‖2 + ‖δi‖22

)
≤C
(
ψ4 + ψ3 + ψ2 + r′ψ1 + r′

3
+ r′‖z − z∗‖2 + ‖z − z∗‖22

)
The last but one inequality holds since ‖qi‖2 ≤ ‖zi− z‖2 ≤ r′. Replacing ψk by correspond-
ing summation completes the proof.
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Lemma 24 (Theorem 21 in Mohammed and Narayanan (2017)). Let Λ1, · · · ,Λk be i.i.d.
random positive semidefinite D × D matrices with expected value E[Λi] = M � µI and
Λi � I. Then for all ε ∈ [0, 1/2],

P
[1

k

k∑
i=1

Λi /∈ [(1− ε)M, (1 + ε)M ]
]
≤ 2D exp

{−ε2µk
2 ln 2

}
.

Here, the matrix interval A ∈ [B,C] means aij ∈ [bij , cij ] holds for any i, j and the matrix
ordering A � B means A−B is a positive semidefinite.

Proof of Lemma 10 Before the proof of Lemma 10, we provide the useful notations and
contents. For convenience, z∗ is set to be the origin of the local coordinate system, and
the coordinates in Tz∗M are set to be the first d coordinates of the D coordinates. We let
Pd : RD → RD be an operator, setting the last (D− d) entries of a vector to be zeros, that
is, Pd(v) = [v1, · · · , vd, 0, · · · , 0]T . We also let P̄d be the operator, setting the first d entries
of a vector to be zeros, that is, P̄d = I −Pd, with I being the identity operator. Notations
v̄ := Pd(v) and v̂ = P̄d(v) are also used without confusion.

Based on these notations, we calculate the useful bound on ‖η̂‖2 for η ∈M∩BD(z, r′).
Using the definition of η̄, we obtain 〈z∗ − η̄, z − z∗〉 = 0, 〈z∗ − η̄, η̂〉 = 0, and, therefore

r′
2 ≥ ‖z − η‖22 = ‖(z − z∗) + (z∗ − η̄)− η̂‖22
≥ ‖z − z∗‖22 − 2‖z − z∗‖2‖η̂‖2 + ‖z∗ − η̄‖22 + ‖η̂‖22
= ‖z − z∗‖22 − 2‖z − z∗‖2‖η̂‖2 + ‖z∗ − η‖22.

Moreover, in accordance with Proposition 2, ‖z∗ − η‖22 ≥ 2τ‖η̂‖2. Combining these two
inequalities, we obtain

r′
2 − ‖z − z∗‖22 + 2‖z − z∗‖2‖η̂‖2 ≥ ‖z∗ − η‖22 ≥ 2τ‖η̂‖2

and, hence,

‖η̂‖ ≤ r′2 − ‖z − z∗‖2

2(τ − ‖z − z∗‖)
. (A.2)

We are now ready to prove Lemma 10. Let λ1 ≥ · · · ≥ λD be the eigenvalues of
matrix 1

|Iz,r′ |
∑

i∈Iz,r′
(pi−z∗)(pi−z∗)T and µ1 · · · ≥ µD be the eigenvalues of the population

covariance matrix M , that is,

M := E[
1

|Iz,r′ |
∑
i∈Iz,r′

(pi − z∗)(pi − z∗)T ].

We see that λd+1 = · · · = λD = µd+1 = · · · = µD = 0. Therefore, we need only a lower
bound for λd, which can be obtained by relating its value to µd through a concentration
inequality given in Lemma 24. Assuming the first d coordinates are aligned with the eigen-
vectors corresponding to the d largest eigenvalues of M , µd is the variance in the d-th
direction. Clearly, the first d coordinates are located in Tz∗M. Let P be the probability
measure on Tz∗M∩BD(z, r′). For any q ∈ Tz∗M∩BD(z, r′), we first bound P(q) above.
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We set S(q) = {ζ ′ : ζ̄ ′ = q}∩BD(z, r′), and Ŝ(q) = ∪ζ′∈S(q){η′ : |η′(i)− ζ ′(i)| ≤ 3σ, ∀i =
1, · · · , D}, where η(i) and ζ(i) represent the i-th element of η and ζ, respectively. Then,
we have ∪q∈Tz∗M∩BD(z,r′)S(q) ⊂ BD(z, r′) and

∪q∈Tz∗M∩BD(z,r′)Ŝ(q) ⊂ ∪ζ′∈BD(z,r′){η′ : |η′(i)− ζ ′(i)| ≤ 3σ, ∀i = 1, · · · , D}

⊂ BD(z, r′ + 3σ
√
D).

The probability at q is

P(q) =
(2πσ)−D/2

Vol(M)

∫
S(q)

dζ ′
∫
M
e−‖η

′−ζ′‖22/2σ2
dµM(η′)

=
(2πσ)−D/2

Vol(M)

∫
S(q)

dζ ′
∫
M∩Ŝ(q)

e−‖η
′−ζ′‖22/2σ2

dµM(η′) (A.3)

+
(2πσ)−D/2

Vol(M)

∫
S(q)

dζ ′
∫
M\Ŝ(q)

e−‖η
′−ζ′‖22/2σ2

dµM(η′). (A.4)

We bound P(q) above by bounding (A.3) and (A.4).

(A.3) =
(2πσ)−D/2

Vol(M)

∫
S(q)

dζ ′
∫
M∩Ŝ(q)

e−‖η̄
′−q‖22/2σ2

e−‖η̂
′−ζ̂′‖22/2σ2

dµM(η′)

≤ (2πσ)−D/2

Vol(M)

∫
M∩Ŝ(q)

e−‖η̄
′−q‖22/2σ2

(∫
0d×RD−d

e−‖η̂
′−ζ̂′‖22/2σ2

dζ̂ ′
)
dµM(η′)

=
(2πσ)−d/2

Vol(M)

∫
M∩Ŝ(q)

e−‖η̄
′−q‖22/2σ2

dµM(η′)

=
(2πσ)−d/2

Vol(M)

∫
Pd(M∩Ŝ(q))

e−‖η̄
′−q‖22/2σ2

√
det
(
I + J(η̄′)TJ(η̄′)

)
dη̄′

≤ (2πσ)−d/2

Vol(M)

(
1 +

C2(r′ + 3σ
√
D)2

τ2

)d/2 ∫
Rd×0D−d

e−‖η̄
′−q‖22/2σ2

dη̄′

=
1

Vol(M)

(
1 +

C2(r′ + 3σ
√
D)2

τ2

)d/2
.

The last inequality holds since ‖J(η̄′)‖F ≤ (C(r′ + 3σ
√
D))/τ with η′ ∈ BD(z, r′ + 3σ

√
D).

According to the definition of S(q) and Ŝ(q), we have for any η′ ∈ M \ Ŝ(q) and ζ ′ ∈ S(q)
the formula |η(i)′ − ζ(i)′| ≤ 3σ, which implies

(2πσ2)−D/2
∫
S(q)

e−‖η
′−ζ′‖/2σ2

dζ ′ ≤ (0.01)D ∀η′ ∈M \ Ŝ(q).

Hence,

(A.4) =
(2πσ)−D/2

Vol(M)

∫
M\Ŝ(q)

(∫
S(q)

e−‖η
′−ζ′‖22/2σ2

dζ ′
)
dµM(η′)

≤ Vol(M\ Ŝ(q))

Vol(M)
(0.01)D ≤ (0.01)D.
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In summary, we have

P(q) ≤ 1

Vol(M)

(
1 +

C2(r′ + 3σ
√
D)2

τ2

)d/2
+ (0.01)D (A.5)

for any q ∈ Tz∗M∩BD(z, r′).

We consider only the lower bound for q in a subset of Tz∗M∩BD(z, r′), namely Tz∗M∩
BD(z∗, r0), where r0 is set as

r0 = min{

√
r′2 −

( r′2 − ‖z − z∗‖22
2(τ − ‖z − z∗‖2)

+ ‖z − z∗‖2 + 3σ
√
D − d

)2
,√

r′2 −
( r′2 − ‖z − z∗‖22

2(τ − ‖z − z∗‖2)
+ ‖z − z∗‖2

)2 − 3σ
√
d}

(A.6)

For any q ∈ Tz∗M∩BD(z∗, r0) and η ∈M∩BD(z, r′), we can verify the following conclusions
via (A.2):

(i) The d-dimensional cube

{q′ : q′(i) = 0 ∀i ≥ d+ 1, |q′(j)− q(j)| ≤ 3σ ∀j ≤ d}

⊂ BD(q, 3σ
√
d) ∩ Tz∗M⊂ {η̄′ : η′ ∈M∩BD(z, r′)},

(ii) The (D − d)-dimensional cube

{η′ : η′(i) = 0 ∀i ≤ d, |η′(j)− η(j)| ≤ 3σ ∀j ≥ d+ 1} ⊂ {ζ̂ ′ : ζ ′ ∈ S(q)}.

Now, we are ready to bound P(q) below for any q ∈ BD(z∗, r0) ∩ Tz∗M.

P(q) =
(2πσ)−D/2

Vol(M)

∫
S(q)

dζ ′
∫
M
e−‖η

′−ζ′‖22/2σ2
dµM(η′)

≥ (2πσ)−D/2

Vol(M)

∫
S(q)

dζ ′
∫
M∩BD(z,r′)

e−‖η̄
′−q‖22/2σ2

e−‖η̂
′−ζ̂′‖22/2σ2

dµM(η′)

≥ (0.99)D−d(2πσ2)−d/2

Vol(M)

∫
M∩BD(z,r′)

e−‖η̄
′−q‖22/2σ2

dµM(η′)

=
(0.99)D−d(2πσ2)−d/2

Vol(M)

∫
Pd(M∩BD(z,r′))

e−‖η̄
′−q‖22/2σ2

√
det
(
I + J(η̄′)TJ(η̄′)

)
dη̄′

=
(0.99)D−d(2πσ2)−d/2

Vol(M)

∫
Pd(M∩BD(z,r′))

e−‖η̄
′−q‖22/2σ2

dη̄′

≥ (0.99)D

Vol(M)

The last but one inequality holds since
√

det
(
I + J(η̄′)TJ(η̄′)

)
≥ 1.
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Since µd is the variance in the d-th direction, we have

µd =
1∫

Tz∗M∩BD(z,r′) P(q′)dLd(q′)

∫
Tz∗M∩BD(z,r′)

q2
dP(q)dLd(q)

≥ α

Vol(Bd(r′))

∫
Tz∗M∩BD(z∗,r0)

q2
ddLd(q)

≥ α

Vol(Bd(r′))

∫ r0

0

∫ π

0
· · ·
∫ π

0

∫ 2π

0

(
`Πd−1

j=1φj

)2
dV

=
Γ(d/2 + 1)α

πd/2(r′)d

∫ r0

0

∫ π

0
· · ·
∫ π

0

∫ 2π

0
`d+1

d−1∏
j=1

sind−j+1 φjd`

d−1∏
j=1

dφj .

where α is the ratio between the lower bound and upper bound of P(q), namely,

α =
(0.99)D

(1 + C2(r′+3σ
√
D)2

τ2
)d/2 + (0.01)DVol(M)

,

and the third line follows with a change of coordinates. Substitute{
q1 → ` cosφ1, q2≤i≤d−1 → ` cosφiΠ

T
j=1i− 1 sinφj , qd → ` sin Πd−1

j=1φj

}
with φd−1 ∈ [0, 2π], φi≤d−2 ∈ [0, π], ` ∈ [0, r0], and let

dV := `d−1Πd−2
j=1 sind−j−i φjd`dφ1 · · · dφd−1.

The integral in the fourth line can be evaluated by noting that
∫ r0

0 `d+1d` = r0
d+2/(d +

2),
∫ 2π

0 sin2 φd−1dφd−1 = π and
∫ π

0 sind−j+1 φjdφj =
√
πΓ((d−j+2)/2)

Γ(1+(d−j+1)/2 for 1 ≤ j ≤ d − 2.

Simplifying as Mohammed and Narayanan (2017) did, we get

µd ≥
α

d+ 2

r0
d+2

(r′)d
= c0

(0.99)D

d+ 2

(r0)d+2

(r′)d
.

According to Lemma 24, for any ε ∈ [0, 1/2], λd ≥ (1 − ε)µd with probability 1 −
d exp{−ε

2µd|Iz,r′ |
2 ln 2 }. Taking ε = 1/2, we have

λd ≥ c0
(0.99)D

d+ 2

(r0)d+2

(r′)d
.

with probability 1− d exp{−ε
2µd|Iz,r′ |
2 ln 2 }. Using r = O(

√
σ) and ‖z − z∗‖ ≤ (1 + c)r, we can

simplify r0 and find c0 satisfying r0 ≥ c0r. Hence, there exists a constant c independent on
r such that λd ≥ cr2, which completes this proof.
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A.3 Proof of Proposition 12, Lemma 13 and Lemma 14

Proof of Proposition 12 To show that α̃(x) is bounded below by c0|Ix,r| is equivalent to
showing that there exists constant c1 > c and c2 such that among the |Ix,r| samples there are
c2|Ix,r| ones lying in BD(x, c1r), where c0 in the lower bound is c0 = c2(1−c2

1)β. To quantify
the number of samples {xi}i∈Ix,r lying in BD(x, c1r), we bound the conditional probability
P(‖xi − x‖2 ≤ c1r|i ∈ Ix,r) below by calculating the lower bound of P(‖xi − x‖2 ≤ c1r) and
the upper bound of P(i ∈ Ix,r), respectively.

By Lemma 23, we have P(i ∈ Ix,c1r) ≥ c3r
d. For the probability P(i ∈ Ix,r), we have

P(i ∈ Ix,r) = P(‖xi − x‖2 ≤ r, yi ∈M \BD(x,Cr))

+ P(‖xi − x‖2 ≤ r, yi ∈M∩BD(x,Cr)),
(A.7)

where

P(‖xi − x‖2 ≤ r, yi ∈M∩BD(x,Cr)) ≤ P(yi ∈M∩BD(x,Cr))

=
Vol(M∩BD(x,C0r))

Vol(M)
= Crd,

and

P(‖xi − x‖2 ≤ r, yi ∈M \BD(x,Cr)) ≤ P(‖ξi‖2 ≥ (C − 1)r)

≤ C1

r
e−

C2
r2 ≤ Crd,

where the second-last inequality holds by Chernoff bound, and the last inequality holds
since r = O(

√
σ) is sufficiently small. Plugging the above bounds into (A.7), we obtain

P(i ∈ Ix,r) ≤ Crd.

Hence, for any i ∈ Ix,r, we have ‖xi − x‖1 ≤ c1r with probability ρ = (crd)/(Crd) < 1 for
being a constant independent on r.

Applying the Berry-Esseen theorem to the |Ix,r| Bernoulli trials, we conclude that there
exists c2|Ix,r| i′ in Ix,r such that ‖xi − x‖2 ≤ c1r with probability 1 − C/

√
|Ix,r|, which

proves (i).
To show (ii), we recall Lemma 23 that P(i ∈ Ix,c1r) ≥ crd. Thus there is a sample among

N samples lying in BD(x, c1r) with probability

1− (1− crd)N = O(Nrd).

Then, α̃(x) ≥ (1− c2
1)β := c′0 with the same probability.

Lemma 25. Suppose ξ ∼ N(0, σ2ID); then we have, for any positive integer k:

(i) E(‖ξ‖k2) = C1σ
k

(ii) Var(‖ξ‖k2) = C2σ
2k
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(iii) E[
(
‖ξ‖k2 − E(‖ξ‖k2)

)3
] = C3σ

3k

(iv) ‖ξi‖k2 and ‖ξj‖k2 are independent if ξi and ξj are independent,

(v) E(‖ξi‖s2‖ξj‖t2) = C4σ
s+t

(vi) Var(‖ξi‖s2‖ξj‖t2) = C5σ
2(s+t)

(vii) E[
(
‖ξi‖s2‖ξj‖t2 − E(‖ξi‖s2‖ξj‖t2)

)3
] = C6σ

3(s+t)

where Cn, n = 1, · · · , 6 are constants depending on D and k.

Proof Letting the i-th element of ξ be denoted by ξ(i), we have the following qualities:

E(‖ξ‖k2) =
1

(2πσ2)
D
2

∫ +∞

−∞
· · ·
∫ +∞

−∞
(

D∑
i=1

ξ(i)2
)k/2e−

∑D
i=1 ξ

(i)2

2σ2 dξ(1)· · ·dξ(D)

=
1

(2πσ2)
D
2

∫ +∞

r=0
rke−r

2/(2σ2)SD(r)dr

=
2π

D
2

(2πσ2)
D
2 Γ(D2 )

∫ +∞

r=0
rD+k−1e−r

2/(2σ2)dr

=
π
D
2

(2πσ2)
D
2 Γ(D2 )

∫ +∞

r=0
rD+k−2e−r

2/(2σ2)dr2

=
π
D
2 (2σ2)

D+k
2

(2πσ2)
D
2 Γ(D2 )

∫ +∞

z=0
(
z

2σ2
)
D+k

2
−1e−z/(2σ

2)d
z

2σ2

=
2k/2σk

Γ(D2 )

∫ +∞

z=0
z
D+k

2
−1e−zdz =

2k/2Γ(D+k
2 )

Γ(D2 )
σk

where Γ(t) =
∫ +∞

0 st−1e−sds is the Gamma function. Plugging the above equality into
Var(‖ξ‖k2) = E(‖ξ‖2k2 )− E(‖ξ‖k2)2, and

E[
(
‖ξ‖k2 − E(‖ξ‖k2)

)3
] =E(‖ξ‖3k2 )− 3E(‖ξ‖2k2 )E(‖ξ‖k2)

+ 3E(‖ξ‖k2)E(‖ξ‖k2)2 − E(‖ξ‖k2)3,

will yield the variance and third moment.

To show the independence, we set FX as the cumulative distribution function of X,
St(ζ) = {ξt : ‖ξt‖k2 ≤ ζ} and ηt = ‖ξt‖k2 with t = i, j. Then

Fηi,ηj (ζi, ζj) = P (ηi ≤ ζi, ηj ≤ ζj)
= P (ξi ∈ Si(ζi), ξj ∈ Sj(ζj))
= P (ξi ∈ Si(ζi))P (ξj ∈ Sj(ζj))
= P (ηi ≤ ζi)P (ηj ≤ ζj)
= Fηi(ζi)Fηj (ζj),
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which completes the proof of independence by definition. Based on the independence, we
obtain

E(‖ξi‖s2‖ξj‖t2) = E(‖ξi‖s2)E(‖ξi‖s2) = (C1σ
s)× C1(σt) = C4σ

s+t.

Plugging the above equality into

Var(‖ξi‖s2‖ξj‖t2) = E(‖ξi‖2s2 ‖ξj‖2t2 )− E(‖ξi‖s2‖ξj‖t2)2

and

E[
(
‖ξi‖s2‖ξj‖t2 − E(‖ξi‖s2‖ξj‖t2)

)3
] =E(‖ξi‖3s2 ‖ξj‖3t2 )− 3E(‖ξi‖2s2 ‖ξj‖2t2 )E(‖ξi‖s2‖ξj‖t2)

+ 3E(‖ξi‖s2‖ξj‖t2)E(‖ξi‖s2‖ξj‖t2)2 − E(‖ξi‖s2‖ξj‖t2)3,

will produce the variance and the third moment.

Proposition 26. Suppose {ξi}ni=1 are i.i.d. drawn from N(0, σ2ID),
∑n

i=1 αi = 1 and
maxi∈{1,··· ,n} αi ≤ Cα/n with certain constant Cα. For any δ, there exist constants C,
depending on D, k, δ, and n1, depending on δ and Cα such that if n ≥ n1, then

n∑
i=1

αi‖ξi‖k2 ≤ Cσk and
1

n2

n∑
i=1

n∑
j=1

‖ξi‖s2‖ξj‖t2 ≤ Cσs+t

holds for k, s, t ≤ 4 with probability at least 1− δ.

Proof By Lemma 25, ‖ξ1‖k2, · · · , ‖ξn‖k2 are i.i.d. random variables drawn from a distri-
bution whose expectation is E(‖ξ‖k2) and variance is Var(‖ξ‖k2). Using the Berry-Esseen
Theorem, the cumulative distribution function of the variable

(
n∑
i=1

αi‖ξi‖k2 − E(‖ξ‖k2)) / (C
1/2
2 σk

√√√√ n∑
i=1

α2
i )

denoted by Fn satisfies

|Fn(t)−Φ(t)| ≤
C0ρ

∑n
i=1 α

3
i

σ3k(
∑n

i=1 α
2
i )

3/2
= C ′0

∑n
i=1 α

3
i

(
∑n

i=1 α
2
i )

3/2
≤ C ′0

∑n
i=1 α

3
i(

1
n(
∑n

i=1 αi)
2
)3/2

= C ′0n
3
2

n∑
i=1

α3
i

where Φ is the cumulative distribution function of standard normal distribution, ρ is the
third moment of ‖ξ‖k2, which is in the order of σ3k according to Lemma 25(iii), and the last
inequality holds in accordance with Cauchy’s inequality.

Since αi ≤ Cα/n, we obtain
∑n

i=1 α
3
i ≤ n(Cαn )3 = C3

αn
−2 and therefore |Fn(t)−Φ(t)| ≤

C ′/
√
n. So there exists a constant C depending on D, k, and δ such that

n∑
i=1

αi‖ξi‖k2 ≤ Cσk,
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with probability 1− δ
2 −C

′/
√
n. Taking n1 = 4C′

δ2
,
∑n

i=1 αi‖ξi‖k2 ≤ Cσk with probability at
least 1− δ when n ≥ n1. Analogously, there exist C and n0 such that

1

n2

n∑
i=1

n∑
j=1

‖ξi‖s2‖ξi‖t2 ≤ Cσs+t.

with probability at least 1− δ when n ≥ n1.

Proof of Lemma 13 By (2.2), we have r < C1. For any given δ, let

n0 = max
{4C2C2d

1

δ2
,
max{n1,

4C2
0

δ2
}

c′

}
,

where C and c′ are the two constants in Proposition 3, n1 is the constant in Proposition
26, and C0 is the constant in Proposition 12. Plugging N ≥ n0r

−d into Proposition 3, we

obtain |Ix,r| ≥ max{n1,
4C2

0
δ2
} with probability at least 1 − δ

2 . Recalling Proposition 12 (i)

and the definition of αi in (2.5), αi ≤ 1
α̃ ≤

Cα
|Ix,r| with probability at least 1− δ

2 and Cα = 1
c0

since 1 − C0√
|Ix,r|

≥ 1 − δ
2 by |Ix,r| ≥

4C2
0

δ2
. As a result, conditions of Proposition 26 hold

with probability at least (1− δ
2)2 ≥ 1− δ. Using Proposition 3, we are able to complete the

proof.

Proof of Lemma 14 Corollary 12 of Boissonnat et al. (2019) shows that∥∥∥ sin
θ(Ux, Uy)

2

∥∥∥
2
≤ ‖x− y‖2

2reach(M)
,

where Ux and Uy are the basis of TxM and TyM, respectively. Letting the orthogonal
complements of Ux and Uy be denoted by Vx and Vy, respectively, we obtain Πx = VxV

T
x

and Πy = VyV
T
y . Then, in accordance with (ii) of Lemma 8,

‖Πx −Πy‖F = ‖VxV T
x − VyV T

y ‖F = ‖UxUx − UyUy‖F ≤ C
∥∥∥ sin θ(Ux, Uy)

∥∥∥
2

≤ 2C
∥∥∥ sin

θ(Ux, Uy)

2

∥∥∥
2
≤ C ‖x− y‖2

τ
.

A.4 Proof of Theorem 17

To prove Theorem 17, we first introduce two lemmas, namely Lemma 27 and Lemma 28.

Lemma 27. Suppose d(x,M) ≤ cr with some constant c < 1 and r = O(
√
σ). For

any given δ, there exist constants C and n0 such that if N ≥ n0r
−d, then the following

inequalities hold:

(i) ‖
(
‖Pxi −Πx∗i

‖2
)
i∈Ix,r‖2 ≤ Cr|Ix,r|

1
2 with probability δ0(1− δ)2,
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(ii) ‖
(
‖xi − x∗i ‖2

)
Ix,r
‖2 ≤ Cr2|Ix,r|

1
2 with probability 1− δ,

(iii) ‖
(
‖x∗i − x∗‖2

)
Ix,r
‖2 ≤ Cr|Ix,r|

1
2 with probability 1− δ.

Proof We begin with (i). Plugging z = xi into Theorem 11, we obtain∥∥∥(‖Pxi −Πx∗i
‖2
)
i∈Ix,r

∥∥∥2

2
≤
∑
i∈Ix,r

(A2 + 2 ∗AB +B2) with probability δ0,

where A = C
r2

1
|Ixi,2r|

∑
j∈Ixi,2r

(
‖ξj‖42 + ‖ξj‖32 + ‖ξj‖22 + r‖ξj‖2

)
and B = C(r+ ‖ξi‖2

r +
‖ξi‖22
r2

).

In accordance with Lemma 13, there exist C and n0 such that∑
i∈Ix,r

AB =
C|Ix,r|
r

1

|Ix,r| × |Ixi,2r|
∑
i∈Ix,r

∑
j∈Ixi,2r

(
‖ξj‖4 + ‖ξj‖3 + ‖ξj‖2 + r‖ξj‖

)
+
C|Ix,r|
r3

1

|Ix,r| × |Ixi,2r|
∑
i∈Ix,r

∑
j∈Ixi,2r

(
‖ξj‖4‖ξi‖+ ‖ξj‖3‖ξi‖+ ‖ξj‖2‖ξi‖+ r‖ξj‖‖ξi‖

)
+
C|Ix,r|
r4

1

|Ix,r| × |Ixi,2r|
∑
i∈Ix,r

∑
j∈Ixi,2r

(
‖ξj‖4‖ξi‖2 + ‖ξj‖3‖ξi‖2 + ‖ξj‖2‖ξi‖2 + r‖ξj‖‖ξi‖2

)
≤ C|Ix,r|(r2 + r2 + r3) ≤ Cr2|Ix,r|,

A2 =
C

r4

1

|Ixi,2r|2
∑

j,k∈Ixi,2r

(
‖ξj‖4‖ξk‖4 + ‖ξj‖4‖ξk‖3 + · · ·+ r2‖ξj‖‖ξk‖

)
≤ C

r4

( 8∑
k=4

σk + r
5∑

k=3

σk + r2σ2
)
≤ Cr2,

∑
i∈Ix,r

B2 =
∑
i∈Ix,r

(
r2 +

‖ξi‖22
r2

+
‖ξi‖42
r4

+ 2‖ξi‖2 + 2
‖ξi‖22
r

+ 2
‖ξi‖32
r3

)
≤ Cr2|Ix,r|,

with probability 1−δ/3 respectively. The above bounds amount to
∥∥∥(‖Pxi−Πx∗i

‖2
)
i∈Ix,r

∥∥∥2

2
≤

Cr2|Ix,r|, which leads to∥∥∥(‖Pxi −Πx∗i
‖2
)
i∈Ix,r

∥∥∥
2
≤ Cr|Ix,r|

1
2 , with probability δ0(1− δ)2.

As for (ii), ∥∥∥(‖xi − x∗i ‖2)Ix,r∥∥∥2

2
=
∑
i∈Ix,r

‖xi − x∗i ‖22 ≤
∑
i∈Ix,r

‖ξi‖22 ≤ |C|Ix,r|σ2,

with probability 1 − δ, which implies
∥∥(‖xi − x∗i ‖2)Ix,r∥∥2

≤ C|Ix,r|
1
2σ = Cr2|Ix,r|

1
2 . We

derive (iii) based on

‖x∗i − x∗‖2 ≤ ‖x∗i − xi‖2 + ‖xi − x‖2 + ‖x− x∗‖2 ≤ ‖ξi‖2 + 2r.
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Thus we have∥∥∥(‖x∗i − x∗‖2)Ix,r∥∥∥2

2
≤
∑
i∈Ix,r

(
‖ξi‖22 + 4r2 + 2r‖ξi‖2

)
≤ C|Ix,r|

(
σ2 + 4r2 + 2rσ

)
≤ Cr2|Ix,r|

with probability 1− δ, which implies
∥∥∥(‖x∗i − x∗‖2)Ix,r∥∥∥2

≤ Cr|Ix,r|
1
2 .

Lemma 28. Suppose d(x,M) ≤ cr with some constant c < 1, r = O(
√
σ) and β ≥ 2. For

any given δ, there exist constants C and n0 such that if N ≥ n0r
−d, then

‖
(
∂vαi(x)

)
i∈Ix,r‖2 ≤

C

r
|Ix,r|−

1
2 with probability 1− δ.

Proof By Lemma 13, α̃(x) ≥ c0|Ix,r| with probability at least 1 − δ. Based on this, we
obtain the following inequalities given 0 ≤ α̃i(x) ≤ 1:∥∥∥(∂vαi(x)

)
i∈Ix,r

∥∥∥
2
≤
∥∥∥(∂vα̃i(x)

α̃(x)

)
i∈Ix,r

∥∥∥
2

+
∥∥∥((∂vα̃(x))α̃i(x)

α̃2(x)

)
i∈Ix,r

∥∥∥
2

≤ C

r

∥∥∥( α̃i(x)
β−1
β

α̃(x)

)
i∈Ix,r

∥∥∥
2

+
∣∣∣∂vα̃(x)

α̃2(x)

∣∣∣∥∥(α̃i(x)
)
i∈Ix,r

∥∥
2

≤ C

r

∥∥∥( 1

α̃(x)

)
i∈Ix,r

∥∥∥
2

+ |∂vα̃(x)

α̃2(x)
|‖(1)i∈Ix,r‖2

≤ C

r
|Ix,r|−

1
2 +

C

r
|Ix,r|

1
2

∑
i∈Ix,r α̃i(x)

β−1
β

α̃2(x)

≤ C

r
|Ix,r|−

1
2 +

C

r
|Ix,r|

1
2
|Ix,r|
|Ix,r|2

≤ C

r
|Ix,r|−

1
2 .

Proof of Theorem17
We rewrite (2.6) as

f(x) = Ψα
x

∑
i∈Ix,r

αi(x)(x− xi), (A.8)

and calculate the first derivative of f(x) as

∂vf(x) =
∑
i∈Ix,r

αi(x)Ψα
x

(
∂v(x− xi)

)
+
∑
i∈Ix,r

αi(x)(∂vΨ
α
x)(x− xi)

+
∑
i∈Ix,r

(∂vαi(x))Ψα
x(x− xi).

(A.9)
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We deal with the three terms one by one. First,∑
i∈Ix,r

αi(x)Ψα
x

(
(∂v(x− xi)

)
=
∑
i∈Ix,r

αi(x)Ψα
xv = Ψα

xv.

To bound the second term of (A.9), we proceed to bound ‖∂vΨα
x‖2. In accordance with (26)

of Fefferman et al. (2018), we establish the relationship between ‖∂vΨα
x‖2 and ‖∂vAx‖2 as

follows:

‖∂vΨα
x‖2 ≤ 8‖∂vAx‖2

= C
∥∥∥∑

i

∂vαi(x)
(
(Pxi −Πx∗i

) + (Πx∗i
−Πx∗)

)
+ Πx∗

(
∂v
∑
i

αi(x)
)∥∥∥

2

≤ C
∑
i

|∂vαi(x)|‖Pxi −Πx∗i
‖2 +

C

τ

∑
i

|∂vαi(x)|‖x∗i − x∗‖2 + 0

≤ C
∥∥∥(∂vαi(x)

)
i∈Ix,r

∥∥∥
2

∥∥∥(‖Pxi −Πx∗i
‖2
)
i∈Ix,r

∥∥∥
2

+
C

τ

∥∥∥(∂vαi(x)
)
i∈Ix,r

∥∥∥
2

∥∥∥(‖x∗i − x∗‖2)i∈Ix,r∥∥∥2

≤ Cr
∥∥∥(∂vαi(x)

)
i∈Ix,r

∥∥∥
2
|Ix,r|

1
2 ,

where the second to the last inequality holds by Cauchy-Schwarz inequality, and the last
inequality holds by Lemma 27 and Lemma 28. As a result,

‖∂vΨα
x‖2 ≤ 8‖∂vAx‖2 ≤ C. (A.10)

Therefore, the second term of (A.9) is bounded as∥∥∥ ∑
i∈Ix,r

αi(x)(∂vΨ
α
x)(x− xi)

∥∥∥
2
≤
∑
i∈Ix,r

αi(x)‖∂vΨα
x‖2‖x− xi‖2 ≤

∑
i∈Ix,r

αi(x)Cr = Cr.

As for the last term in (A.9), we have∥∥∥ ∑
i∈Ix,r

∂vαi(x)Ψα
x(x− xi)

∥∥∥
2
≤
∥∥∥ ∑
i∈Ix,r

∂vαi(x)Ψα
x(x∗ − x∗i )

∥∥∥
2

+
∥∥∥(Ψα

x(x− x∗)
) ∑
i∈Ix,r

∂vαi(x)
∥∥∥

2

+
∥∥∥ ∑
i∈Ix,r

∂vαi(x)Ψα
x(x∗i − xi)

∥∥∥
2

=
∥∥∥ ∑
i∈Ix,r

∂vαi(x)Ψα
x(x∗ − x∗i )

∥∥∥
2

+ 0

+
∥∥∥ ∑
i∈Ix,r

∂vαi(x)Ψα
x(x∗i − xi)

∥∥∥
2
,
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where∥∥∥ ∑
i∈Ix,r

∂vαi(x)Ψα
x(x∗ − x∗i )

∥∥∥
2
≤
∑
i∈Ix,r

|∂vαi(x)|‖Ψα
x(x∗i − x∗)‖2

≤
∥∥∥(∂vαi(x)

)
i∈Ix,r

∥∥∥
2

∥∥∥(‖Ψα
x(x∗i − x∗)‖

)
i∈Ix,r

∥∥∥
2
≤ Cr

and ∥∥∥ ∑
i∈Ix,r

∂vαi(x)Ψα
x(x∗i − xi)

∥∥∥
2
≤
∑
i∈Ix,r

|∂vαi(x)|‖Ψα
x(x∗i − xi)‖2

≤
∥∥∥(∂vαi(x)

)
i∈Ix,r

∥∥∥
2

∥∥∥(‖Ψα
x(x∗i − xi)‖

)
i∈Ix,r

∥∥∥
2
≤ Cr

based on

‖Ψα
x(x∗i − x∗)‖2 ≤ ‖Ψα

x −Πx∗‖2‖x∗i − x∗‖2 + ‖Πx∗(x
∗
i − x∗)‖2

≤ Cr2 + C
‖x∗i − x∗‖22

τ
≤ Cr2,

where the second inequality holds in probability via Theorem 15 and Proposition 2. The
above bounds amount to the bound on the first derivative, that is, ‖∂vf(x)−Ψα

xv‖2 ≤ Cr.
The above proof is based on Lemma 27, Lemma 28 and Theorem 15, which are valid

when Lemma 13 and Theorem 11 hold. Hence, the conclusion obtained from the above
proof is valid when Lemma 13 and Theorem 11 simultaneously hold, whose probability is
at least δ0(1− δ)2.

A.5 Proof of Theorem 19

To prove Theorem 19, we first introduce Lemma 29.

Lemma 29. Suppose d(x,M) ≤ cr with some constant c < 1, r = O(
√
σ) and β ≥ 2. For

any given δ, there exist constants C and n0 such that if N ≥ n0r
−d, then∥∥∥(∂v∂uαi(x)

)
i∈Ix,r

∥∥∥
2
≤ C

r2
|Ix,r|−

1
2 with probability 1− δ.

Proof∥∥∥(∂v∂uαi(x)
)
i∈Ix,r

∥∥∥
2
≤
∥∥∥(∂v∂uα̃i(x)

α̃(x)

)
i∈Ix,r

∥∥∥
2

+
∥∥∥(∂v∂uα̃(x)

α̃2(x)
α̃i(x)

)
i∈Ix,r

∥∥∥
2

+
∥∥∥((∂vα̃i(x))(∂uα̃(x))

α̃2(x)

)
i∈Ix,r

∥∥∥
2

+
∥∥∥((∂uα̃i(x))(∂vα̃(x))

α̃2(x)

)
i∈Ix,r

∥∥∥
2

+ 2
∥∥∥((∂vα̃(x)

α̃(x)

)(∂uα̃(x)

α̃(x)

)( α̃i(x)

α̃(x)

))
i∈Ix,r

∥∥∥
2
.
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We bound these five terms one-by-one using α̃(x) ≥ c|Ix,r| which holds with probability
1− δ by Lemma 13 and 0 ≤ α̃i(x) ≤ 1. For the first term,∥∥∥(∂v∂uα̃i(x)

α̃(x)

)
i∈Ix,r

∥∥∥
2
≤ C

α̃(x)

∥∥∥(α̃i(x)
β−2
β
‖x− xi‖22

r4
+ α̃i(x)

β−1
β
|vTu|
r2

)
i∈Ix,r

∥∥∥
2

≤ C

α̃(x)

∥∥∥( 2

r2

)
i∈Ix,r

∥∥∥
2
≤ C

r2
|Ix,r|−

1
2 .

For the second term,∥∥∥(∂v∂uα̃(x)

α̃2(x)
α̃i(x)

)
i∈Ix,r

∥∥∥
2
≤
∣∣∣∂v∂uα̃(x)

α̃2(x)

∣∣∣∥∥(α̃i(x)
)
i∈Ix,r

∥∥
2

≤
∣∣∣∂v∂uα̃(x)

α̃2(x)

∣∣∣∥∥(1)i∈Ix,r
∥∥

2

≤ 1

α̃(x)

∥∥∥(∂v∂uα̃i(x)

α̃(x)

)
i∈Ix,r

∥∥∥
2
‖(1)i∈Ix,r‖22

≤ C

r2
|Ix,r|−1|Ix,r|−

1
2 |Ix,r| =

C

r2
|Ix,r|−

1
2 .

The third and fourth terms are similar, where the third term is bounded by

‖
((∂vα̃i(x))(∂uα̃(x))

α̃2(x)

)
i∈Ix,r‖2 ≤ |

∂uα̃(x)

α̃(x)
|‖
(∂vα̃i(x)

α̃(x)

)
i∈Ix,r‖2

≤ ‖
(∂uα̃i(x)

α̃(x)

)
i∈Ix,r‖2‖(1)i∈Ix,r‖2‖

(∂vα̃i(x)

α̃(x)

)
i∈Ix,r‖2

≤ C

r
|Ix,r|−

1
2 |Ix,r|

1
2
C

r
|Ix,r|−

1
2 =

C

r2
|Ix,r|−

1
2 ,

and analogically, the fourth is bounded by∥∥∥((∂uα̃i(x))(∂vα̃(x))

α̃2(x)

)
i∈Ix,r

∥∥∥
2
≤ C

r2
|Ix,r|−

1
2

Finally, the fifth term:∥∥∥((∂vα̃(x)

α̃(x)

)(∂uα̃(x)

α̃(x)

)( α̃i(x)

α̃(x)

))
i∈Ix,r

∥∥∥
2

=
(∂vα̃(x)

α̃(x)

)(∂uα̃(x)

α̃(x)

)∥∥∥( α̃i(x)

α̃(x)

)
i∈Ix,r

∥∥∥
2

≤ C

r
× C

r
× |Ix,r|−

1
2 =

C

r2
|Ix,r|−

1
2 .

Summing the above five terms up amounts to the proof.

Proof of Theorem19 Letting G(x) =
∑

i∈Ix,r αi(x)(x−xi), we obtain the following bound

on the second derivative of f(x)∥∥∂v(∂uf(x)
)∥∥

2
≤
∥∥(∂v∂uΨα

x)G(x)
∥∥

2
+
∥∥(∂vΨ

α
x)(∂uG(x))

∥∥
2

+
∥∥(∂uΨα

x)(∂vG(x))
∥∥

2
+
∥∥Ψα

x(∂v∂uG(x))
∥∥

2
.

(A.11)
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For the first term, we have

‖∂v∂uΨα
x‖2 ≤ C

(
‖∂vAx‖2‖∂uAx‖2 + ‖∂v∂uAx‖2

)
≤ C + C

∑
i

|∂v∂uαi(x)|
(
‖Pxi −Πx∗i

‖2 + ‖Πx∗i
−Πx∗‖2

)
+ C

∥∥∥Πx∗
(
∂v∂u

∑
i

αi(x)
)∥∥∥

2

≤ C + C
∥∥∥(∂v∂uαi(x)

)
i∈Ix,r

∥∥∥
2

∥∥∥(‖Pxi −Πx∗i
‖2
)
i∈Ix,r

∥∥∥
2

+ C
∥∥∥(∂v∂uαi(x)

)
i∈Ix,r

∥∥∥
2

∥∥∥(‖x∗i − x∗‖2
τ

)
i∈Ix,r

∥∥∥
2

+ 0

≤ C +
(C
r2
|Ix,r|−

1
2

)
×
(
Cr|Ix,r|

1
2

)
≤ C

r
,

where the second to the last inequality holds by Lemma 27 while the last inequality holds
by Lemma 29, and therefore

‖(∂v∂uΨα
x)G(x)‖2 ≤

C

r
× r = C. (A.12)

For the second and third terms,

‖∂vG(x)‖2 =
∥∥∥v +

∑
i

∂vαi(x)(xi − x1) +
(∑

i

∂vαi(x)
)
x1

∥∥∥
2

≤ 1 +
∥∥(∂vαi(x)

)
i∈Ix,r

∥∥
2

∥∥(2r)i∈Ix,r
∥∥

2

≤ 1 +
(C
r
|Ix,r|−

1
2

)
×
(

2r|Ix,r|
1
2

)
= 1 + C,

and by (A.10) we obtain∥∥(∂vΨ
α
x)
(
∂uG(x)

)∥∥
2
≤ C,

∥∥(∂uG(x)
)
(∂vΨ

α
x)
∥∥

2
≤ C.

For the fourth term, we have∥∥Ψα
x

(
∂v∂uG(x)

)∥∥
2

≤
∥∥∥Ψα

x

∑
i

(∂v∂uαi(x))xi

∥∥∥
2

≤‖Ψα
x‖2

∑
i

|∂v∂uαi(x)|‖xi − x∗i ‖2 +
∑
i

|∂v∂uαi(x)|‖Ψα
x(x∗i − x∗)‖2 + 0

≤
∥∥∥(∂v∂uαi(x)

)
i∈Ix,r

∥∥∥
2

(∥∥(‖xi − x∗i ‖)i∈Ix,r
∥∥

2
+
∥∥(‖Ψα

x(x∗i − x∗)‖)i∈Ix,r
∥∥

2

)
≤C
( 1

r2
|Ix,r|−

1
2

)
×
(

(σ + r2)|Ix,r|
1
2

)
= C.

The above proof is based on Lemma 27 and Lemma 29, which are valid when Lemma 13 and
Theorem 11 simultaneously hold. Hence, ‖∂v∂uf(x)‖2 ≤ C when Lemma 13 and Theorem
11 simultaneously hold, whose probability is at least δ0(1− δ)2.
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A.6 Proof of Proposition 20, Proposition 21 and Lemma 22

Proof of Proposition 20 Considering the function φ(d) = (1 − d
r2

)β for t ≥ 0, whose

derivative is φ′(d) = β
r2

(
1− d

r2

)β−1
, we obtain |φ′(d)| ≤ β

r2
. This implies

|α̃i(x)− α̃i(z)| ≤
β

r2
‖x− z‖22 ≤

β

r2
ε2 ≤ α(x)

|Ix,2r|2
r ≤ r

|Ix,2r|
,

where the last inequality holds since α(x) =
∑

i∈Ix,r α̃i(x) ≤
∑

i∈Ix,r 1 = |Ix,r| ≤ |Ix,2r|. For

any z ∈ BD(x, ε), we have ‖z−x‖2 ≤ r and Iz,r ⊂ Ix,2r. By the definition of α̃i(z), we have
α̃i(z) = 0 for i /∈ Iz,r, and therefore

α(z) =
∑
i∈Iz,r

α̃i(z) =
∑
i∈Ix,2r

α̃i(z)

=
∑

i∈Ix,2r

(
α̃i(x) + α̃i(z)− α̃i(x)

)
= α(x) +

∑
i∈Ix,2r

(
α̃j(z)− α̃j(x)

)
.

Plug α(z) into the following denominator,

|αi(z)− αi(x)| =
∣∣∣ α̃i(z)
α(z)

− α̃i(x)

α(x)

∣∣∣
≤ max

{
α̃i(x)±

∣∣α̃i(z)− α̃i(x)
∣∣

α(x)∓
∑

j∈Ix,2r |α̃i(z)− α̃i(x)|
− α̃i(x)

α(x)

}

≤ max

 α̃i(x) + α(x)
|Ix,2r|2 r

α(x)− |Ix,2r| α(x)
|Ix,2r|2 r

− α̃i(x)

α(x)
,
α̃i(x)

α(x)
−

α̃i(x)− α(x)
|Ix,2r|2 r

α(x) + |Ix,2r| α(x)
|Ix,2r|2 r


≤ max

{
α̃i(x) + r

|Ix,2r|

α(x)− α(x) r
|Ix,2r|

− α̃i(x)

α(x)
,
α̃i(x)

α(x)
−

α̃i(x)− r
|Ix,2r|

α(x) + α(x) r
|Ix,2r|

}

≤ max

{(
α̃i(x) + r

|Ix,2r|
)
(1 + C r

|Ix,2r|)− α̃i(x)

α(x)
,
α̃i(x)−

(
α̃i(x)− r

|Ix,2r|
)
(1− C r

|Ix,2r|)

α(x)

}

≤ α̃i(x)r + Cr + Cr2

α(x)|Ix,2r|
≤ r + Cr + Cr2

α(x)|Ix,2r|
≤ r + Cr + Cr2

c0|Ix,2r|
= C ′

r

|Ix,2r|
,

the second-to-last inequality holds since α̃i(x) ≤ 1 while the last inequality holds with
probability 1− (1− crd)N by Proposition 12(ii).

Based on the upper bound of |αi(x)− αi(z)|, we obtain

‖Ax −Az‖2 = ‖
∑
i∈Ix,r

αi(x)Pxi −
∑
i∈Iz,r

αi(z)Pxi‖2 = ‖
∑
i∈Ix,2r

αi(x)Pxi −
∑
i∈Ix,2r

αi(z)Pxi‖2

≤
∑
i∈Ix,2r

|αi(x)− αi(z)|‖Pxi‖2 ≤
∑
i∈Ix,2r

C ′
r

|Ix,2r|
· 1 = C ′r.

Noting ‖Ψα
x −Ax‖2 ≤ Cr with probability δ0(1− δ)2 by (3.6) in Theorem 15, we have

‖Ψα
z −Az‖2 ≤ ‖Ψα

x −Az‖2 ≤ ‖Ψα
x −Ax‖2 + ‖Ax −Az‖2 ≤ Cr,
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and hence ‖Ψα
x − Ψα

z ‖ ≤ ‖Ψα
x − Az‖2 + ‖Az − Ψα

z ‖2 ≤ Cr with probability δ0(1 − δ)2
(
1 −

(1− crd)N
)
, which completes this proof.

Proof of Proposition 21 We first prove (i). Since the rows of Jf (x) are orthogonal to the
contour surface at x, as the basis of the spanning space of Jf (x)T , Wx is also the basis of
the normal space of Mout at x and thereby Wx ∈ RD×(D−d) by Theorem 4. This implies

P
(
statement (i) holds

)
= P

(
Wx ∈ RD×(D−d)

)
≥ P

(
Theorem 4 holds

)
(A.13)

Now we proceed to prove (ii). It is clear that g(z) = 0 if f(z) = 0. Thus, we only need
to prove that g(z) = 0 implies f(z) = 0. To do this, we first assume the reverse, f(z) 6= 0
and g(z) = W T

x f(z) = 0. Since W T
x is the basis of span

(
Jf (x)T

)
, Jf (x) can be rewritten

as Jf (x) = YW T
x and Jf (x)f(z) = Y

(
W T
x f(z)

)
= Y g(z) = 0. By the definition of f(z) in

equality (2.6), Ψα
z f(z) = f(z). Hence, we obtain

‖Jf (x)−Ψα
z ‖2 = max

v 6=0

∥∥(Jf (x)−Ψα
z

)
v
∥∥

2

‖v‖2
≥
∥∥(Jf (x)−Ψα

z

)
f(z)

∥∥
2

‖f(z)‖2
=
‖0− f(z)‖2
‖f(z)‖2

= 1.

However,

‖Jf (x)−Ψα
z ‖2 ≤ ‖Jf (x)−Ψα

x‖2 + ‖Ψα
x −Πx∗‖F + ‖Πx∗ −Πz∗‖F + ‖Πz∗ −Ψα

z ‖F ≤ Cr

where the first term is bounded by (3.8) in Corollary 18, the second and fourth terms are
bounded by applying Theorem 15 for x and z, respectively, and the third term is bounded
by Lemma 14. We conduct contradictory bounds of ‖Jf (x) − Ψα

z ‖2. Hence, f(z) = 0 if
g(z) = 0. The statement (ii) is proved when Corollary 18, Theorem 15 and Lemma 14 hold
simultaneously. Noticing that Corollary 18 holds when Lemma 13 and Theorem 11 hold,
Theorem 4 holds when Theorem 15 and Proposition 12(ii) hold, and Theorem 15 holds
when Lemma 13 and Theorem 11 hold, we obtain

P
(
statement (i) and (ii) hold

)
≥ P

((
Theorem 4 and Corollary 18 hold for x

)
∩
(

Theorem 15 holds for x, z
))

≥ P
(
Proposition 12(ii) holds for x

)
P
(
Lemma 13 and Theorem 11 hold for x, z

)
≥ δ2

0(1− δ)4
(
1− (1− crd)N

)
.

The proof is, therefore, complete.

Proposition 30. Letting σ1 ≥ · · · ≥ σD be the singular values of Jf (x), then with probability
at least δ0(1− δ)2,

1 +O(r) ≥ σ1 ≥ σD−d ≥ 1−O(r).

Proof Let Ψα
x = VxV

T
x and Jf (x) = UxΣxW

T
x be the thin singular value decomposition of

Jf (x), where Ux,Wx ∈ RD×(D−d) and Σx ∈ R(D−d)×(D−d) by Theorem 4.
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To begin with, we bound σD−d below. Let S1 = span(Vx) and S2 = span{w1, · · ·wD−d−1},
where w1, · · ·wD−d−1 are the first (D − d − 1) columns of Wx. Since dim(S1) > dim(S2),
there exists η 6= 0 ∈ S1 ∩ S⊥2 , which implies Ψα

xη = η and wTi η = 0 for i = 1, · · · , D− d− 1.
Hence, (

Ψα
x − Jf (x)

)
η = η − UxΣxW

T
x η = η − uD−dσD−dwTD−dη,

where uD−d is the (D − d)-th column of Ux. This leads to

‖
(
Ψα
x − Jf (x)

)
η‖2 = ‖η − uD−dσD−dwTD−dη‖2

≥
∣∣∣‖η‖2 − ‖uD−dσD−dwTD−dη‖2∣∣∣ = |1− σD−d|‖η‖2.

We obtain

Cr ≥ ‖Ψα
x − Jf (x)‖2 ≥

∥∥∥(Ψα
x − Jf (x)

)
η
∥∥∥

2

‖η‖2
= |1− σD−d|,

where the first inequality holds by (3.8) in Corollary 18. So, σD−d ≥ 1−O(r).
Now, we turn to the upper bound of σ1. Let η = w1, then ‖η‖2 = 1 and wTi η = 0 for

any i ≥ 2. Hence, (
Ψα
x − Jf (x)

)
η = Ψα

xη − UxΣxW
T
x η = Ψα

xη − σ1u1.

This leads to

Cr ≥ ‖Ψα
x − Jf (x)‖2 ≥

∥∥(Ψα
x − Jf (x)

)
η
∥∥

2
= ‖Ψα

xη − σ1u1‖2 ≥
∣∣‖Ψα

xη‖2 − σ1

∣∣.
So, σ1 ≤ ‖Ψα

xη‖2+Cr ≤ 1+Cr. Note that the above proof relies on Theorem 4 and Corollary
18, where Theorem 4 and Corollary 18 hold when Lemma 13, Theorem 11 and Proposi-
tion 12(ii) hold. This proof is completed with probability at least δ0(1−δ)2

(
1−(1−crd)N

)
.

Proposition 31. ‖W T
x Ψα

xW
T
x − ID−d‖2 ≤ Cr with probability at least δ0(1− δ)2

(
1− (1−

crd)N
)
.

Proof By Theorem 4, we obtain Wx ∈ RD×(D−d). Let the singular value decomposition
of W T

x Vx =
∑D−d

i=1 siaib
T
i , where si is the i-th singular value of W T

x Vx and ai and bi are the
singular vectors corresponding to si. Let η = VxbD−d, then

Cr ≥ ‖Ψα
x − Jf (x)‖2 ≥

∥∥(Ψα
x − Jf (x)

)
η‖2 = ‖VxbD−d − UxΣxW

T
x VxbD−d‖2∣∣1− ‖UxΣx(

D−d∑
i=1

siaib
T
i )bD−d‖2

∣∣ =
∣∣1− sD−d‖ΣxaD−d‖2

∣∣,
where the first inequality holds by (3.8) in Corollary 18. This leads to

1− Cr
‖ΣxaD−d‖2

≤ sD−d ≤
1 + Cr

‖ΣxaD−d‖2
.
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Noticing 1 − O(r) ≤ ‖σxaD−d‖2 ≤ 1 + O(r) by Proposition 30, we conclude 1 − O(r) ≤
sD−d ≤ s1 ≤ 1 since ‖W T

x Vx‖2 ≤ 1. So,

‖W T
x Ψα

xWx − ID−d‖2 = ‖W T
x VxV

T
x Wx − ID−d‖2

= ‖ASSTAT −AAT ‖2 = ‖A(SST − ID−d)AT ‖2 ≤ Cr,

where A = [a1, · · · , aD−d] and S is a diagonal matrix with (s1, · · · , sD−d) as the diagonal
entries. Note that the above proof relies on Theorem 4 and Corollary 18, where Theorem
4 and Corollary 18 hold when Lemma 13, Theorem 11 and Proposition 12(ii) hold. This
proof is completed with probability at least δ0(1− δ)2

(
1− (1− crd)N

)
.

Proof of Lemma 22 Under the settings that the first d coordinates are the basis of
TxMout, and the last D − d coordinates are the columns of Wx, Wx can be rewritten as
Wx = (0, ID−d)

T . Hence, we obtain

Jg(z)(0, ID−d)
T = W T

x Jf (z)Wx

=W T
x

(
Jf (z)− Jf (x)

)
Wx +W T

x

(
Jf (x)−Ψα

x

)
Wx +

(
W T
x Ψα

xWx − ID−d
)

+ ID−d.

This leads to

‖Jg(z)(0, ID−d)T − ID−d‖2
≤ ‖Jf (z)− Jf (x)‖2 + ‖Jf (x)−Ψα

x‖2 + ‖W T
x Ψα

xWx − ID−d‖2
≤ C1r + C2r + C3r ≤ Cr,

where ‖Jf (z)−Jf (x)‖2 ≤ ‖Jf (z)−Jf (x)‖F ≤ C1r by ( 4.2) in Theorem 5, ‖Jf (x)−Ψα
x‖2 ≤

‖Jf (x)−Ψα
x‖F ≤ C2r by Corollary 18 and ‖W T

x Ψα
xWx − ID−d‖2 ≤ C3r by Proposition 31.

Using Theorem 2.9.10 (the implicit function theorem) in Hubbard and Hubbard (2001), φ
exits. Carrying out the first derivative on g

(
ζ, φ(ζ)

)
= 0, we obtain

0 = ∂sg(ζ, φ(ζ)) = Jg(ζ, φ(ζ))

(
∂sζ

∂sφ(ζ)

)
= W T

x

(
Jf (ζ, φ(ζ))− Jf (x)

)( ∂sζ
∂sφ(ζ)

)
+W T

x Jf (x)

(
∂sζ

∂sφ(ζ)

)
= W T

x

(
Jf (ζ, φ(ζ))− Jf (x)

)( ∂sζ
∂sφ(ζ)

)
+W T

x UxΣx(0, ID−d)

(
∂sζ

∂sφ(ζ)

)
.

This implies that

∂sφ(ζ) = −Σ−1
x

(
W T
x Ux

)−1
W T
x

(
Jf (ζ, φ(ζ))− Jf (x)

)( ∂sζ
∂sφ(ζ)

)
.

Calculating `2-norm of the two sides of the above equality, we obtain

‖∂sφ(ζ)‖2 =
∥∥∥Σ−1

x

(
W T
x Ux

)−1
W T
x

(
Jf (ζ, φ(ζ))− Jf (x)

)( ∂sζ
∂sφ(ζ)

)∥∥∥
2

≤
(
1 +O(r)

)
C
∥∥∥Jf (ζ, φ(ζ))− Jf (x)

∥∥∥
2
≤ C‖(ζ, φ(ζ))− x‖2
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Carrying out the second derivative on g(ζ, φ(ζ)) = 0, we obtain

0 = ∂tJg(ζ, φ(ζ))

(
∂sζ

∂sφ(ζ)

)
+ Jg(ζ, φ(ζ))

(
0

∂t∂sφ(ζ)

)
.

Letting ei denote the i-th column of ID and

u =

(
∂tζ

∂tφ(ζ)

)
,

the i-th column of ∂tJg(ζ, φ(ζ)) is

∂t∂eig(ζ, φ(ζ)) = ‖u‖2∂ u
‖u‖2

∂eig(ζ, φ(ζ)) = ‖u‖2W T
x ∂ u

‖u‖2
∂eif(ζ, φ(ζ)).

In conjunction with ‖∂ u
‖u‖2

∂eif(ζ, φ(ζ))‖2 ≤ C, as proved in Theorem 19, ‖∂t∂eig(ζ, φ(ζ))‖ ≤
C, and therefore

‖∂tJg(ζ, φ(ζ)‖2 ≤ C.

Hence,

∂t∂sφ(ζ) = −Σ−1
x

(
W T
x Ux

)−1
(
∂tJg(ζ, φ(ζ))

(
∂sζ

∂sφ(ζ)

)
+W T

x

(
Jf (ζ, φ(ζ))− Jf (x)

)( ∂sζ
∂sφ(ζ)

))
,

which implies

‖∂t∂sφ(ζ)‖2 ≤ C(1 +O(r))
(
C + C‖z − x‖2

)
≤ C.

Note that the above proof relies on Theorem 5, Corollary 18, Proposition 31 and Theorem
19, which are valid when Lemma 13, Theorem 11 and Proposition 12(ii) hold. Hence, this
proof is completed with probability at least δ0(1− δ)2

(
1− (1− crd)N

)
.

Appendix B. Gradient of ‖f(x)‖2
2

Let F (x) = ‖f(x)‖22, d· denote the differential and G(x) = x−
∑

i∈Ix,r αi(x)xi, then

dF (x) = 2〈f(x), df(x)〉 = 2
〈
Ψα
xG(x), d

(
Ψα
xG(x)

)〉
= 2〈Ψα

xG(x)G(x)T , dΨα
x〉+ 2〈Ψα

xG(x), dG(x)〉

= 2〈Ψα
xG(x)G(x)T , dΨα

x〉+ 2〈Ψα
xG(x), dx−

∑
i∈Ix,r

(
dαi(x)xi

)
〉,

where

dαi(x) =
dα̃i(x)

α(x)
− α̃i(x)dα(x)

α(x)2
=
dα̃i(x)

α(x)
− αi(x)dα(x)

α(x)

= −2(d+ 2)

r2α(x)
〈α̃i(x)

d+1
d+2 (x− xi)− αi(x)

∑
i

α̃i(x)
d+1
d+2 (x− xi), dx〉

:= 〈dαi(x)

dx
, dx〉
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and dΨα
x can be calculated as below. Let λ1 ≥ · · · ≥ λn be the eigenvalues of Ax and

µ1 > · · · > µs are the different values of {λi}. Suppose λn−d > λn−d+1, and µ1 > · · · > µt
are the different values of λ1 ≥ · · · ≥ λn−d. Pi,x = Vi,xV

T
i,x is an orthogonal projection and

columns of Vi,x are the eigenvectors corresponding to µi. Then, we have Ψα
x =

∑t
i=1 Pi,x.

By Shapiro and Fan (1995),

dPi,x =
s∑
j=1

1

µj − µi
Pi,x(dAx)Pj,x + Pj,x(dAx)Pi,x,

and thereby

dΨα
x =

t∑
i=1

dPi,x =
t∑
i=1

s∑
j=t+1

1

µj − µi
Pi,x(dAx)Pj,x + Pj,x(dAx)Pi,x

Plug dΨα
x into the first term of dF (x),

〈
Ψα
xG(x)G(x)T , dΨα

x

〉
= 〈T, dAx〉 =

∑
i∈Ix,r

〈T, Pxi〉〈
dαi(x)

dx
, dx〉,

where T =
∑t

i=1

∑s
j=t+1

1
µj−µiPi,x

(
Ψα
xG(x)G(x)T

)
Pj,x+Pj,x

(
Ψα
xG(x)G(x)T

)
Pi,x. Plugging

dαi(x) into the second term of dF (x), we obtain

〈Ψα
xG(x), dx−

∑
i∈Ix,r

(
dαi(x)xi

)
〉 = 〈Ψα

xG(x), dx〉 −
∑
i∈Ix,r

〈Ψα
xG(x), xi〉〈

dαi(x)

dx
, dx〉.

As the summation of the first and second term,

dF (x) =
〈

2
∑
i∈Ix,r

(
〈T, Pxi〉+ 〈Ψα

xG(x), xi〉
)dαi(x)

dx
+ Ψα

xG(x), dx
〉

So the gradient of F (x) is

grad(x) = 2
∑
i∈Ix,r

(
〈T, Pxi〉+ 〈Ψα

xG(x), xi〉
)dαi(x)

dx
+ Ψα

xG(x). (B.1)

Appendix C. Results of Facial Image Denoising
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Figure 10: Performance of facial image denoising with ρ = 0.2. The first row consists of
original images while the second row features blurred images. The third to sev-
enth rows contain deblurred images using km17, cf18, ya21(deg=1), ya21(deg=2)
and our method, respectively.
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Figure 11: Performance of facial image denoising with ρ = 0.4. The first row consists of orig-
inal images while the second row again shows blurred images. The third to sev-
enth rows contain deblurred images using km17, cf18, ya21(deg=1), ya21(deg=2)
and our method, respectively.
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