diff --git a/_tutorials/incompressible_flow/Inc_Combustion/Inc_Combustion.md b/_tutorials/incompressible_flow/Inc_Combustion/Inc_Combustion.md index c97b2161..bb8759bf 100644 --- a/_tutorials/incompressible_flow/Inc_Combustion/Inc_Combustion.md +++ b/_tutorials/incompressible_flow/Inc_Combustion/Inc_Combustion.md @@ -29,8 +29,7 @@ The mesh is created using [gmsh](https://gmsh.info/) and a respective `.geo` scr ![Mesh with boundary conditions](../../../tutorials_files/incompressible_flow/Inc_Combustion/mesh.png) Figure (1): Computational mesh with color indication of the used boundary conditions. -The MLP files describe five architectures. These are used to predict the thermo-chemical state, preferential diffusion scalars, and reaction source terms. -![MLP architecture used for prediction of temperature, diffusion coefficient, and dynamic viscosity](../../../tutorials_files/incompressible_flow/Inc_Combustion/MLP_Group1.png) +The MLP files describe five dense, feed-forward multi-layer perceptrons. These are used to predict the thermo-chemical state, preferential diffusion scalars, and reaction source terms. ## Prerequisites diff --git a/_tutorials/index.md b/_tutorials/index.md index 53ddb1bf..8ad80e02 100644 --- a/_tutorials/index.md +++ b/_tutorials/index.md @@ -69,8 +69,10 @@ Simulation of internal, laminar, incompressible flow in a differentially-heated Simulation of internal, turbulent, incompressible flow in a unit cell of a 2D pin-fin heat exchanger. * [Species Transport](/tutorials/Inc_Species_Transport/) Simulation of internal, turbulent, incompressible flow through a mixing channel. -* [Species Transport Composition Dependent Model](/tutorials/Inc_Species_Transport_Composition_Dependent_Model/) +* [Species Transport Composition Dependent Model](/tutorials/Inc_Species_Transport_Composition_Dependent_Model/) Simulation of internal, turbulent, 3D incompressible flow through a Kenics static mixer. +* [Incompressible, Laminar Combustion Simulation](/tutorials/Inc_Combustion/) +Simulation of a pre-mixed, laminar flame with preferential diffusion and heat loss. * [Turbulent Bend](/tutorials/Inc_Turbulent_Bend/) Simulation of turbulent flow in a 90 degree pipe bend using wall functions.