Skip to content

Commit 8e0366b

Browse files
Update all translated document pages (#1543)
Automated update of translated documentation Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
1 parent d4e1b60 commit 8e0366b

27 files changed

+544
-544
lines changed

docs/ja/agents.md

Lines changed: 25 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -4,16 +4,16 @@ search:
44
---
55
# エージェント
66

7-
エージェントはアプリの中核となる基本コンポーネントです。エージェントは、instructions と tools で構成された大規模言語モデル( LLM )です。
7+
エージェントはアプリの中核となる構成要素です。エージェントは、instructions とツールで構成された大規模言語モデル(LLM)です。
88

9-
## 基本設定
9+
## 基本構成
1010

1111
エージェントで最も一般的に設定するプロパティは次のとおりです。
1212

1313
- `name`: エージェントを識別する必須の文字列です。
14-
- `instructions`: developer message または system prompt とも呼ばれます。
15-
- `model`: 使用する LLM と、temperature、top_p などのモデル調整パラメーターを設定する任意の `model_settings` です
16-
- `tools`: エージェントがタスク達成のために使用できるツールです
14+
- `instructions`: 開発者メッセージ(developer messageまたは システムプロンプト とも呼ばれます。
15+
- `model`: どの LLM を使用するか、および任意の `model_settings` で temperature、top_p などのモデル調整パラメーターを設定します
16+
- `tools`: エージェントがタスクを遂行するために使用できるツールです
1717

1818
```python
1919
from agents import Agent, ModelSettings, function_tool
@@ -33,7 +33,7 @@ agent = Agent(
3333

3434
## コンテキスト
3535

36-
エージェントは `context` 型に対してジェネリックです。コンテキストは依存性注入のためのツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、ツール、ハンドオフなどに渡され、エージェントの実行における依存関係や状態を格納するための入れ物として機能します。コンテキストには任意の Python オブジェクトを提供できます
36+
エージェントはその `context` 型についてジェネリックです。コンテキストは依存性注入のためのツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、ツール、ハンドオフなどに渡され、エージェントの実行に必要な依存関係や状態をまとめて保持する役割を果たします。任意の Python オブジェクトをコンテキストとして渡せます
3737

3838
```python
3939
@dataclass
@@ -52,7 +52,7 @@ agent = Agent[UserContext](
5252

5353
## 出力タイプ
5454

55-
デフォルトでは、エージェントはプレーンテキスト(すなわち `str`出力を生成します。特定のタイプの出力を生成したい場合は`output_type` パラメーターを使用できます。一般的な選択肢としては [Pydantic](https://docs.pydantic.dev/) オブジェクトがありますが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップ可能な任意の型(dataclasses、lists、TypedDict など)をサポートしています
55+
デフォルトでは、エージェントはプレーンテキスト(つまり `str`を出力します。特定の型の出力を生成したい場合は`output_type` パラメーターを使用できます。一般的には [Pydantic](https://docs.pydantic.dev/) のオブジェクトを使いますが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる任意の型(dataclasses、list、TypedDict など)をサポートします
5656

5757
```python
5858
from pydantic import BaseModel
@@ -73,11 +73,11 @@ agent = Agent(
7373

7474
!!! note
7575

76-
`output_type` を渡すと、通常のプレーンテキスト応答ではなく、[structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するようモデルに指示します
76+
`output_type` を渡すと、モデルは通常のプレーンテキスト応答ではなく [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するように指示されます
7777

7878
## ハンドオフ
7979

80-
ハンドオフは、エージェントが委任できるサブエージェントです。ハンドオフのリストを提供すると、エージェントは関連性がある場合にそれらへ委任できます。これは、単一のタスクに特化したモジュール型のエージェントをオーケストレーションする強力なパターンです。詳しくは [ハンドオフ](handoffs.md) ドキュメントをご覧ください
80+
ハンドオフは、エージェントが委任できるサブエージェントです。ハンドオフのリストを渡すと、関連があればエージェントはそれらに委任できます。これは、単一のタスクに特化したモジュール式のエージェントをオーケストレーションする強力なパターンです。詳しくは [ガードレール](handoffs.md) のドキュメントを参照してください
8181

8282
```python
8383
from agents import Agent
@@ -98,7 +98,7 @@ triage_agent = Agent(
9898

9999
## 動的 instructions
100100

101-
多くの場合、エージェント作成時に instructions を指定できます。ただし、関数を介して動的な instructions を提供することも可能です。この関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数のどちらも使用できます。
101+
多くの場合、エージェントの作成時に instructions を指定しますが、関数を介して動的に指定することもできます。関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数のどちらも使用できます。
102102

103103
```python
104104
def dynamic_instructions(
@@ -115,15 +115,15 @@ agent = Agent[UserContext](
115115

116116
## ライフサイクルイベント(フック)
117117

118-
エージェントのライフサイクルを観測したい場合があります。たとえば、イベントのログを記録したり、特定のイベント発生時にデータを事前取得したりできます`hooks` プロパティでエージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスをサブクラス化し、必要なメソッドをオーバーライドしてください。
118+
エージェントのライフサイクルを観測したい場合があります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりする場合です`hooks` プロパティでエージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスをサブクラス化し、必要なメソッドをオーバーライドしてください。
119119

120120
## ガードレール
121121

122-
ガードレールを使用すると、エージェントの実行と並行してユーザー入力に対するチェック/バリデーションを実行し、エージェントの出力が生成された後にもチェックできます。たとえば、ユーザー入力とエージェントの出力の関連性をスクリーニングできます。詳しくは [ガードレール](guardrails.md) ドキュメントをご覧ください
122+
ガードレールにより、エージェントの実行と並行して ユーザー入力 に対するチェック/検証を行い、さらにエージェントの出力が生成された後にも検証を実行できます。たとえば、ユーザーの入力とエージェントの出力の関連性を確認できます。詳しくは [ガードレール](guardrails.md) のドキュメントを参照してください
123123

124-
## エージェントの複製/コピー
124+
## エージェントのクローン/コピー
125125

126-
エージェントの `clone()` メソッドを使用すると、エージェントを複製し、任意のプロパティを変更できます
126+
エージェントの `clone()` メソッドを使うと、エージェントを複製でき、任意のプロパティを変更することもできます
127127

128128
```python
129129
pirate_agent = Agent(
@@ -140,12 +140,12 @@ robot_agent = pirate_agent.clone(
140140

141141
## ツール使用の強制
142142

143-
ツールのリストを指定しても、必ずしも LLM がツールを使用するとは限りません[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定してツール使用を強制できます。有効な値は次のとおりです。
143+
ツールのリストを渡しても、LLM が必ずツールを使用するとは限りません[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することで、ツール使用を強制できます。有効な値は次のとおりです。
144144

145-
1. `auto`LLM がツールを使うかどうかを判断します。
146-
2. `required`LLM にツールの使用を要求します(ただし、どのツールを使うかは賢く判断できます)。
147-
3. `none`LLM にツールを使用しないことを要求します
148-
4. 特定の文字列を設定(例: `my_tool`LLM にその特定のツールの使用を要求します
145+
1. `auto`LLM がツールを使うかどうかを判断します。
146+
2. `required`LLM にツールの使用を要求します(ただし、どのツールを使うかは賢く判断します)。
147+
3. `none`LLM にツールを使用し _ない_ ことを要求します
148+
4. 特定の文字列(例: `my_tool`を設定し、その特定のツールを使用することを LLM に要求します
149149

150150
```python
151151
from agents import Agent, Runner, function_tool, ModelSettings
@@ -163,11 +163,11 @@ agent = Agent(
163163
)
164164
```
165165

166-
## ツール使用時の動作
166+
## ツール使用の挙動
167167

168-
`Agent` `tool_use_behavior` パラメーターは、ツール出力の扱い方を制御します。
169-
- `"run_llm_again"`: デフォルト。ツールを実行し、その結果を LLM が処理して最終応答を生成します
170-
- `"stop_on_first_tool"`: 最初のツール呼び出しの出力を最終応答として使用し、以後の LLM 処理は行いません
168+
`Agent` 構成の `tool_use_behavior` パラメーターは、ツール出力の扱い方を制御します。
169+
- `"run_llm_again"`: デフォルト。ツールを実行し、LLM が結果を処理して最終応答を生成します
170+
- `"stop_on_first_tool"`: 最初のツール呼び出しの出力を最終応答として使用し、LLM によるさらなる処理は行いません
171171

172172
```python
173173
from agents import Agent, Runner, function_tool, ModelSettings
@@ -207,7 +207,7 @@ agent = Agent(
207207
tool_use_behavior=StopAtTools(stop_at_tool_names=["get_weather"])
208208
)
209209
```
210-
- `ToolsToFinalOutputFunction`: ツール結果を処理し、停止するか LLM を継続するかを判断するカスタム関数です
210+
- `ToolsToFinalOutputFunction`: ツール結果を処理し、停止するか LLM を続行するかを判断するカスタム関数です
211211

212212
```python
213213
from agents import Agent, Runner, function_tool, FunctionToolResult, RunContextWrapper
@@ -245,4 +245,4 @@ agent = Agent(
245245

246246
!!! note
247247

248-
無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定できます。無限ループが起こるのは、ツールの結果が LLM に送られ、`tool_choice` により LLM がさらにツール呼び出しを生成し続けるためです
248+
無限ループを防ぐため、フレームワークはツール呼び出しの後に `tool_choice` を自動的に "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定できます。無限ループが起きるのは、ツール結果が LLM に送られ、`tool_choice` によって LLM がさらに別のツール呼び出しを生成し続けてしまうためです

docs/ja/config.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -6,15 +6,15 @@ search:
66

77
## API キーとクライアント
88

9-
デフォルトでは、 SDK はインポートされるとすぐに LLM リクエストとトレーシングのために `OPENAI_API_KEY` 環境変数を探します。アプリが起動する前にその環境変数を設定できない場合は、 [set_default_openai_key()][agents.set_default_openai_key] 関数でキーを設定できます。
9+
デフォルトでは、SDK はインポートされるとすぐに LLM リクエストおよび トレーシング のために `OPENAI_API_KEY` 環境変数を探します。アプリ起動前にその環境変数を設定できない場合は、[set_default_openai_key()][agents.set_default_openai_key] 関数でキーを設定できます。
1010

1111
```python
1212
from agents import set_default_openai_key
1313

1414
set_default_openai_key("sk-...")
1515
```
1616

17-
また、使用する OpenAI クライアントを設定することもできます。デフォルトでは、 SDK `AsyncOpenAI` インスタンスを作成し、上記の環境変数またはデフォルトキーから API キーを使用します。これを変更するには、 [set_default_openai_client()][agents.set_default_openai_client] 関数を使用します。
17+
また、使用する OpenAI クライアントを設定することもできます。デフォルトでは、SDK は環境変数または上で設定したデフォルトキーから API キーを用いて `AsyncOpenAI` インスタンスを作成します。これを変更するには、[set_default_openai_client()][agents.set_default_openai_client] 関数を使用します。
1818

1919
```python
2020
from openai import AsyncOpenAI
@@ -24,7 +24,7 @@ custom_client = AsyncOpenAI(base_url="...", api_key="...")
2424
set_default_openai_client(custom_client)
2525
```
2626

27-
最後に、使用する OpenAI API をカスタマイズすることもできます。デフォルトでは OpenAI Responses API を使用します。 [set_default_openai_api()][agents.set_default_openai_api] 関数で、 Chat Completions API を使うように上書きできます
27+
さらに、使用する OpenAI API をカスタマイズすることもできます。デフォルトでは OpenAI Responses API を使用します。これを上書きして Chat Completions API を使うには、[set_default_openai_api()][agents.set_default_openai_api] 関数を使用します
2828

2929
```python
3030
from agents import set_default_openai_api
@@ -34,35 +34,35 @@ set_default_openai_api("chat_completions")
3434

3535
## トレーシング
3636

37-
トレーシングはデフォルトで有効です。デフォルトでは、上記の OpenAI API キー(つまり環境変数または設定したデフォルトキー)を使用します。トレーシングに使用する API キーを個別に設定するには、 [`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用します。
37+
トレーシング はデフォルトで有効です。デフォルトでは、上記の OpenAI API キー(すなわち、環境変数または設定したデフォルトキー)を使用します。トレーシング に使用する API キーを個別に設定するには、[`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用します。
3838

3939
```python
4040
from agents import set_tracing_export_api_key
4141

4242
set_tracing_export_api_key("sk-...")
4343
```
4444

45-
[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使用すると、トレーシングを完全に無効にすることもできます
45+
また、[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数で トレーシング を完全に無効化できます
4646

4747
```python
4848
from agents import set_tracing_disabled
4949

5050
set_tracing_disabled(True)
5151
```
5252

53-
## デバッグ ログ
53+
## デバッグログ
5454

55-
SDK にはハンドラーが設定されていない Python ロガーが 2 つあります。デフォルトでは、これは警告とエラーが `stdout` に送られ、それ以外のログは抑制されることを意味します。
55+
SDK には、ハンドラーが一切設定されていない 2 つの Python ロガーがあります。デフォルトでは、これは警告とエラーが `stdout` に送られ、それ以外のログは抑制されることを意味します。
5656

57-
冗長なログを有効にするには、 [`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用します。
57+
詳細なログを有効にするには、[`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用します。
5858

5959
```python
6060
from agents import enable_verbose_stdout_logging
6161

6262
enable_verbose_stdout_logging()
6363
```
6464

65-
また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズできます。詳しくは [Python logging guide](https://docs.python.org/3/howto/logging.html) を参照してください。
65+
また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズできます。詳細は [Python logging guide](https://docs.python.org/3/howto/logging.html) を参照してください。
6666

6767
```python
6868
import logging
@@ -81,9 +81,9 @@ logger.setLevel(logging.WARNING)
8181
logger.addHandler(logging.StreamHandler())
8282
```
8383

84-
### ログ内の機微データ
84+
### ログ内の機密データ
8585

86-
一部のログには機微データ(例: ユーザー データ)が含まれる場合があります。これらのデータを記録しないようにするには、次の環境変数を設定してください。
86+
一部のログには機密データ(例: ユーザー データ)が含まれる場合があります。これらのデータが記録されないようにするには、次の環境変数を設定してください。
8787

8888
LLM の入力と出力のログ記録を無効にするには:
8989

0 commit comments

Comments
 (0)