Skip to content

Commit 73eb85e

Browse files
authored
Add files via upload
1 parent a4aa215 commit 73eb85e

File tree

1 file changed

+151
-0
lines changed

1 file changed

+151
-0
lines changed

run_longExp.py

Lines changed: 151 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,151 @@
1+
import argparse
2+
import os
3+
import torch
4+
from exp.exp_main import Exp_Main
5+
import random
6+
import numpy as np
7+
8+
fix_seed = 2021
9+
random.seed(fix_seed)
10+
torch.manual_seed(fix_seed)
11+
np.random.seed(fix_seed)
12+
13+
parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
14+
15+
# basic config
16+
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
17+
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
18+
parser.add_argument('--model', type=str, required=True, default='Transformer',
19+
help='model name, options: [Autoformer, Informer, Transformer]')
20+
21+
# data loader
22+
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
23+
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
24+
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
25+
parser.add_argument('--features', type=str, default='M',
26+
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
27+
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
28+
parser.add_argument('--freq', type=str, default='h',
29+
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
30+
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
31+
32+
# forecasting task
33+
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
34+
parser.add_argument('--label_len', type=int, default=48, help='start token length')
35+
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
36+
37+
38+
# DLinear
39+
parser.add_argument('--individual', action='store_true', default=False, help='DLinear: a linear layer for each variate(channel) individually') #not share
40+
# Formers
41+
parser.add_argument('--embed_type', type=int, default=0, help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
42+
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') # DLinear with --individual, use this hyperparameter as the number of channels
43+
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
44+
parser.add_argument('--c_out', type=int, default=7, help='output size')
45+
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
46+
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
47+
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
48+
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
49+
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
50+
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
51+
parser.add_argument('--factor', type=int, default=1, help='attn factor')
52+
parser.add_argument('--distil', action='store_false',
53+
help='whether to use distilling in encoder, using this argument means not using distilling',
54+
default=True)
55+
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
56+
parser.add_argument('--embed', type=str, default='timeF',
57+
help='time features encoding, options:[timeF, fixed, learned]')
58+
parser.add_argument('--activation', type=str, default='gelu', help='activation')
59+
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
60+
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
61+
62+
# optimization
63+
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
64+
parser.add_argument('--itr', type=int, default=2, help='experiments times')
65+
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
66+
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
67+
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
68+
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
69+
parser.add_argument('--des', type=str, default='test', help='exp description')
70+
parser.add_argument('--loss', type=str, default='mse', help='loss function')
71+
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
72+
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
73+
74+
# GPU
75+
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
76+
parser.add_argument('--gpu', type=int, default=0, help='gpu')
77+
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
78+
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
79+
parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
80+
81+
args = parser.parse_args()
82+
83+
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
84+
85+
if args.use_gpu and args.use_multi_gpu:
86+
args.dvices = args.devices.replace(' ', '')
87+
device_ids = args.devices.split(',')
88+
args.device_ids = [int(id_) for id_ in device_ids]
89+
args.gpu = args.device_ids[0]
90+
91+
print('Args in experiment:')
92+
print(args)
93+
94+
Exp = Exp_Main
95+
96+
if args.is_training:
97+
for ii in range(args.itr):
98+
# setting record of experiments
99+
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
100+
args.model_id,
101+
args.model,
102+
args.data,
103+
args.features,
104+
args.seq_len,
105+
args.label_len,
106+
args.pred_len,
107+
args.d_model,
108+
args.n_heads,
109+
args.e_layers,
110+
args.d_layers,
111+
args.d_ff,
112+
args.factor,
113+
args.embed,
114+
args.distil,
115+
args.des, ii)
116+
117+
exp = Exp(args) # set experiments
118+
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
119+
exp.train(setting)
120+
121+
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
122+
exp.test(setting)
123+
124+
if args.do_predict:
125+
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
126+
exp.predict(setting, True)
127+
128+
torch.cuda.empty_cache()
129+
else:
130+
ii = 0
131+
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(args.model_id,
132+
args.model,
133+
args.data,
134+
args.features,
135+
args.seq_len,
136+
args.label_len,
137+
args.pred_len,
138+
args.d_model,
139+
args.n_heads,
140+
args.e_layers,
141+
args.d_layers,
142+
args.d_ff,
143+
args.factor,
144+
args.embed,
145+
args.distil,
146+
args.des, ii)
147+
148+
exp = Exp(args) # set experiments
149+
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
150+
exp.test(setting, test=1)
151+
torch.cuda.empty_cache()

0 commit comments

Comments
 (0)